
Swarm Interpolation Using

an Approximate Chebyshev Distribution

Joshua Kirby1, Marco A. Montes de Oca2, Steven Senger2, Louis F. Rossi2,
and Chien-Chung Shen1

1 Department of Computer and Information Sciences,
University of Delaware, Newark, USA

2 Department of Mathematical Sciences, University of Delaware, Newark, USA
jothki@udel.edu, {mmontes,senger,rossi}@math.udel.edu,

cshen@mail.eecis.udel.edu

Abstract. In this paper, we describe a novel swarming framework that
guides autonomous mobile sensors into a flexible arrangement to inter-
polate values of a field in an unknown region. The algorithm is devised
so that the sensor distribution will behave like a Chebyshev distribution,
which can be optimal for certain ideal geometries. The framework is de-
signed to dynamically adjust to changes in the region of interest, and
operates well with very little a priori knowledge of the given region.

For comparison, we interpolate a variety of nontrivial fields using a
standard swarming algorithm that produces a uniform distribution and
our new algorithm. We find that our new algorithm interpolates fields
with greater accuracy.

1 Introduction

The capability for a swarm of robots for tracking the location of a contamina-
tion or other hazard has been well understood for some time [6] [4], but once a
primary body has been identified, or if its location is obvious from the start as
for a large oil spill, mapping out the distribution of the field, the swarm interpo-
lation problem is a different matter. Bertozzi et. al. presented a system for edge
tracking, using a linked chain of robots that shape themselves to the outside con-
tours of the region [2]. This method is sufficient for gathering information about
the shape of a contaminated region, but not about the distribution of contami-
nants within it. Turduev et. al. developed a system for coordinating movement
towards areas of higher concentration, but is designed more for identifing loca-
tions of maximum concentrations than for complete coverage of the region [10].
Cortes et. al. put forth a system for coverage via managing the configuration of
Voronoi partitions, but it is optimized to detect events rather than gather data
[3] . Finally, Krause et. al. presented an algorithm using the concept of mutual
information to optimize placement, but assumes a fixed network rather than a
mobile swarm [8] .

Kalentar et. al. proposed a solution involving dividing the robots present into
two mutually exclusive groups [7] . One group acts to orient itself with the edge

M. Dorigo et al. (Eds.): ANTS 2012, LNCS 7461, pp. 324–331, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Swarm Interpolation Using an Approximate Chebyshev Distribution 325

of the region, in a manner similar to Bertozzi’s work. The second group acts to
fill out the middle of the group, using a more conventional swarming algorithm
to maintain a uniform distribution. The goal of this paper is to demonstrate a
technique for improvement upon the distribution of robots within such a region.

When interpolating fields with a large number of measurements, the distribu-
tion of interpolating nodes is crucial for minimizing error. An effective distribu-
tion for this is based on the roots of a Chebyshev polynomial. (See [1], [9], and
the references contained therein for a general discussion.) The following system
yields the roots of the desired Chebyshev polynomial.

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x) − Tn−1(x) (n ≥ 1) (1)

Restricting the domain to [-1,1], for instance, Chebyshev polynomials can be
specified by

Tn(x) = cos(n cos−1 x) (n ≥ 0) (2)

where n is the desired number of roots for the polynomial. Using the positions of
the roots of a Chebyshev polynomial as interpolation nodes for a 1D field leads
to an error formula of

|f(x)− p(x)| ≤ 1

2n(n+ 1)!
max|t|≤1|f (n+1)(t)|, (3)

where f(x) is the function being interpolated and p(x) is the interpolation poly-
nomial based on the Chebyshev roots. This distribution is optimal for polynomial
interpolation. The distribution can be further extended from 1D into a 2D circle
by applying the Chebyshev distribution along the radial axis while distributing
points uniformly along the angular axis.

Aligning a swarm to a grid is a difficult problem when the area to be covered
is not known in advance, but generating a similar but meshless distribution is
a simpler matter. Typical swarming algorithms will produce meshless uniform
distributions of robots, so we finesse a standard swarming algorithm by altering
the distances measured between robots. If the perceived positions of the robots
are transformed such that a Chebyshev distribution appears to the robots to
be a uniform distribution, then the robots will naturally settle into an arrange-
ment which is extremely close to an appropriate Chebyshev distribution as they
swarm. In this paper, we present a model for achieving this distribution.

2 Force-Based Swarming Model

The simulation is carried out by a modified version of the Qualnet simulation
platform, which handles actions and communications as discrete events, and
simulates delay and signal loss in communications.

The algorithm utilizes a force-based model, where each robot has attractive
or repulsive forces exerted on it by other nearby robots. In order to simulate a
more realistic environment with limited communication ranges, and to limit the
amount of computation required, a cutoff based on physical distance is applied,

326 J. Kirby et al.

with robots that fall outside that distance being ignored by each other when
forces are calculated. The overall force for a robot is given by

Fn =
∑

j∈rnear

Force(n, j) (4)

where Fn is the total force vector for robot n, rnear is the set of nearby robots,
and Force(n, j) is a function giving the force vector felt between two robots
n and j.

In order to allow the robots to rapidly spread across a region while being
constrained by its edge, we used an algorithm that alters the behavior of robots
based on the difference between their current sensor readings and a set field
strength, with the force felt by the robots directly proportional to that differ-
ence. Robots within the region thus feel repulsive forces and robots outside the
region feel attractice forces, which approach zero as robots approach the edges
of the region. In addition, a small field-independent repulsive force is included.
This serves both to prevent robots on the outside from overly converging, and
to prevent robots directly on the edge from becoming completely locked into
position. The equation for the forces is

Force(n, j) = (Fscalene
−Ffactor

√
(xn−xj)2 +Rscalee

−Rfactor

√
(xn−xj)2)

× (cos(arg(xn − xj)), sin(arg(xn − xj))) (5)

where Ffactor, Rscale, and Rfactor are scaling factors, and Fscalen is given by

Fscalen = a(φn − edgevalue) (6)

where a is a scaling factor, φn is the value sensed by robot n at its current
position, and edgevalue is the value that is sensed on the boundary of the region.

Unlike for physical forces, the net force does not indicate an acceleration, but
rather a target velocity. The equation for acceleration is

An = κ(Fn − Vn) (7)

where Vn is the current velocity of robot n as measured at the time of compu-
tation and κ is a factor determining the rate at which acceleration occurs.

This model will yield a uniform spread across the region of interest. The
modifications necessary to produce a Chebyshev distribution are described in
the next section.

3 Applying Chebyshev Distribution

In order to move from a uniform distribution to a Chebyshev distribution, the
coordinates can be remapped in such a way that they appear uniform when the
nodes are properly distributed. The equation for forces then becomes

Force(n, j) = (Fscalene
−Ffactor

√
(vxn−vxj)2 +Rscalee

−Rfactor

√
(xn−xj)2)

× (cos(arg(xn − xj)), sin(arg(xn − xj))) (8)

Swarm Interpolation Using an Approximate Chebyshev Distribution 327

while the formula for vx, assuming that the points lie along the x axis, is

vx =
xmax − xmin

2
(π − cos−1(x− xmax + xmin

2
)) (9)

where xmax is the high endpoint of the region, xmin is the low endpoint of the
region, x is the set of true positions of the robots, and vx is the set of virtual
positions of the robots, which will be used for generating forces.

The concept of a Chebyshev distribution can be extended to a circular region,
with a dense outer edge and a sparse middle. An example of such a distribution
is given in Figure 1. Extending a Chebyshev distribution in such a manner
requires a shift in the way coordinates are handled, above and beyond simply
adding an additional dimension. The same basic density distribution is present,
but rather than simply remapping both the x and y axes, the coordinates need
to be remapped along every line passing through the midpoint of the region.

(a) Circular Chebyshev Distribution (b) Starlike Chebyshev Distribution

Fig. 1. 2D Chebyshev Distributions

This can be accomplished by converting the coordinates of the robots from
Cartesian to polar, centered on the midpoint of the region. Once this is done,
the necessary coordinate shifts will all be parallel to the radial axis, and the
magnitude of the shifts will be based solely on the radial positions. The equations
for the shifts are

r =
√
(x− xmid)2 + (y − ymid)2 (10)

θ = tan−1((y − ymid), (x − xmid)) (11)

vr = redge cos
−1(r

redge
) (12)

vθ = θ, vx = vr cos(vθ), vy = vr sin(vθ) (13)

where xmid is the x coordinate of the midpoint of the region, ymid is the y
coordinate of the midpoint of the region, and redge is the radius of the region.

Perfectly circular regions are unlikely to exist under realistic conditions, but
the concept of a Chebyshev-like distribution can be extended by allowing the

328 J. Kirby et al.

value of redge to vary across the region. As a result, each robot will have its
own idea of how its distribution should work based on its angular position. The
formula for this is

vr = rlocaledge cos
−1(

r

rlocaledge
) (14)

where rlocaledge is an array containing the local edge distances for each node. An
example of such a distribution is given in Figure 1.

Ideally, rlocaledge would contain the exact values for the edge distances, but in
this algorithm, the only information available is the reported positions and sen-
sor readings of the other nodes. In order to approximate the true distance to the
nearest edge, the nodes on the outside of the region are self-selected to act as rep-
resentatives for a section of the edge, based on whether there is at least a 90 degree
arc between any of the node’s neighbors. Nodes on the inside look for the edge rep-
resentative with the closest angular distance, and base their value for rlocaledge on
the distance between the representative node and the swarm, while nodes on the
outside adopt their own distance, canceling out any shift in position.

4 Experiment Design

Four sets of experiments were performed with the algorithm, each based on a
different sensed field. The equations for the four fields are given below, with
(15) generating a circular level set, (16) generating a square, (17) generating a
perturbed circle, and (18) generating a concave level set.

φ(x, y) = e−8((x−.5)2+(y−.5)2) (15)

φ(x, y) = e(−8max(|x−.5|,|y−.5|)2) (16)

φ(x, y) = (.05 ∗ (sin(15(x− .5)) + sin(15(y − .5))))

× e(−8((x−.5)2+(y−.5)2)) (17)

φ(x, y) = e(−8((x−.15)2+(y−.5)2))

+ e(−8((x−.85)2+(y−.5)2)) (18)

Each set consisted of multiple experiments, across which the number of nodes
varied, with each experiment run using 50, 100, 200, or 400. In addition, the
same configurations were used for a version of the algorithm with the virtual
coordinate remapping, yielding uniform distributions of robots across the region,
with the same exterior edge but different interior node density. Each set therefore
contained four Chebyshev runs and four corresponding uniform runs.

For all of the runs, the robots were initially placed in a uniform rectangular
grid spanning from the coordinates [0,0] to [1000,1000], though they flowed be-
yond those boundaries during the runs. The parameters used for the swarming
algorithm were Ffactor = .01, a = 200, Rscale = .02, and Rfactor = 100. The target
edge strength for all fields was edgevalue = .5. The scaling factor for acceleration
was κ = 1.

Swarm Interpolation Using an Approximate Chebyshev Distribution 329

5 Interpolation

In the kinds of applications we are envisioning, all the data we will have at
our disposal are measurements at the robots’ locations. Thus, our input is a set
{(x1, φ1), (x2, φ2)), . . . , (xN , φN))}, where N is the number of robots, xn ∈ R

2

represents the location of the nth robot, and φn = f(xn) is the nth robot’s
measurement of the variable of interest (represented by the evaluation of the
function f , whose definition is not known). Our goal is to find a function g such
that g(x) = φ and that the difference between g and f at locations different from
xn, n = 1, . . . , N is as small as possible. This problem is known as scattered data
interpolation [5].

In this paper, we tackle this problem using radial basis function interpolation.
The goal is to find the values of the coefficients ck, k = 1, . . . , N such that

g(x) =

N∑

i=1

ciϕ(||x− xi||2) , (19)

where ϕ is a radial basis function, and ||·||2 is the Euclidean norm. The radial
basis functions used in our experiments are Gaussians of the form

ϕ(r) = e−(ar)2 , (20)

where a is a parameter called shape parameter. By enforcing the condition
g(xi) = yi, the coefficients ci, i = 1, . . . , N can be found by solving the linear sys-
tem Ac = φ where the entries Ajk of the matrix A are equal to ϕ(||xj − xk||2),
j, k = 1, . . . , N , c = [c1, c2. . . . , cN]T , and φ = [φ1, φ2. . . . , φN]T .

We use two error measures. The first measure is the root-mean-square error
(RMS-error) and is computed as follows

RMS-error =

√√√√ 1

M

M∑

j=1

(g(Ej)− f(Ej))
2
, (21)

where Ej , j = 1, . . . ,M are the evaluation points. The second measure is the
maximum error (MAX-error) and is given by

MAX-error = max{|g(Ej)− f(Ej)|} . (22)

6 Results and Conclusions

We generated a rectangular grid of 500 × 500 points to sample a function f ,
which represents the fields described in Section 4, in the region [−0.2, 1.2]2 and
selected the points where x ∈ [−0.2, 1.2]2 to compute the RMS and MAX errors.

The positions of the robots were rescaled so that the boundary of the swarm
matched the level curves corresponding to f(x) = 0.5 in all the tested fields, re-
sulting in a slightly smaller evaluation domain. The shape parameter of the radial

330 J. Kirby et al.

Spatial error with 400 robots. Uniform (left), Chebyshev (right).

Fig. 2. Spatial distribution of the error on the irregular field (Eq. 17)

Table 1. Error Ratios

Robots
RMS Error MAX Error

Circular Rectilinear Perturbed Concave Circular Rectilinear Perturbed Concave
field field field field field field field field

50 6.28e−01 8.35e−01 7.78e−01 7.20e−01 7.36e−01 5.68e−01 1.15e+00 1.17e+00
100 1.21e+00 9.65e−01 1.29e+00 9.81e−01 1.47e+00 3.76e−01 2.30e+00 2.04e+00
200 7.00e−01 5.79e−01 1.08e+00 1.38e+00 8.59e−01 5.39e−01 2.36e+00 3.82e+00
400 1.11e+00 8.37e−01 2.36e+00 2.31e+00 2.06e+00 5.80e−01 2.98e+00 3.60e+00

basis function used in our experiments was set to 7. Videos and results of the exper-
iments can be found at http://degas.cis.udel.edu/SwarmInterpolation/.

Fig. 2, shows the spatial distributions of the error on the perturbed field with
400 robots. While the uniform distribution shows high error regions close to the
edges of the evaluation domain, which confirms the observation made in Section
1 about the tendency of the error to grow near the boundaries of the domain,
the Chebyshev-like distribution of robots results in the error being more evenly
distributed across the domain.

In Table 1, we report the ratio of the errors obtained with the uniform dis-
tribution to the Chebyshev-like distribution using RMS and maximum metics.
A ratio greater than one (highlighted in boldface) means that the error ob-
tained with the uniform distribution is greater than the error obtained with the
Chebyshev-like distribution.

In the majority of test cases, the RMS and MAX errors were greater than one,
meaning that the Chebyshev-like distribution outperformed the uniform distri-
bution. This effect was particularly pronounced for the more complex perturbed
and concave fields, and with greater numbers of robots within the fields. The
primary exception to this was the rectilinear field, which we assume is due to
issues our swarming algorithm has with reaching the corners of the level curves.

http://degas.cis.udel.edu/SwarmInterpolation/

Swarm Interpolation Using an Approximate Chebyshev Distribution 331

Spatial error with 100 robots. Uniform (left), Chebyshev (right).

Fig. 3. Spatial distribution of the error on the rectilinear field

Acknowledgments. The authors thank Sherry Vaughan for her contributions
to this project. This material is based upon work supported by the National
Science Foundation under grant CCF-0916035.

References

1. Battles, Z., Trefethen, L.N.: An extension of matlab to continuous functions and
operators. SIAM J. Sci. Comput. 25(5) (May 2004),
http://dx.doi.org/10.1137/S1064827503430126

2. Bertozzi, A., Kemp, M., Marthaler, D.: Determining environmental boundaries:
Asynchronous communication and physical scales. LNCIS, vol. 309, pp. 403–405
(2005)

3. Cortes, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing
networks. IEEE Trans. on Robotics and Automation 20(2), 243–255 (2004)

4. Cui, X., Hardin, T., Ragade, R.K., Elmaghraby, A.S.: A swarm-based fuzzy logic
control mobile sensor network for hazardous contaminants localization. In: 2004
IEEE Int. Conf. on Mobile Ad-hoc and Sensor Systems, pp. 194–203 (October
2004)

5. Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. Interdisci-
plinary Math. Sci., vol. 6. World Scientific Publishing, Singapore (2007)

6. Kadrovach, B.A., Lamont, G.B.: A particle swarm model for swarm-based net-
worked sensor systems. ACM, New York (2002)

7. Kalantar, S., Zimmer, U.: Distributed shape control of homogeneous swarms of
autonomous underwater vehicles. Autonomous Robots 22(1), 37–53 (2007)

8. Krause, A., Singh, A., Guestrin, C.: Near-optimal sensor placements in gaus-
sian processes: Theory, efficient algorithms and empirical studies. J. Mach. Learn.
Res. 9, 235–284 (2008), http://dl.acm.org/citation.cfm?id=1390681.1390689

9. Trefethen, L.: Spectral Methods in MATLAB. SIAM, Philadelphia (2000)
10. Turduev, M., Atas, Y., Sousa, P., Gazi, V., Marques, L.: Cooperative chemical

concentration map building using decentralized asynchronous particle swarm op-
timization based search by mobile robots. In: 2010 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pp. 4175–4180 (October 2010)

http://dx.doi.org/10.1137/S1064827503430126
http://dl.acm.org/citation.cfm?id=1390681.1390689

	Swarm Interpolation Using an Approximate Chebyshev Distribution
	Introduction
	Force-Based Swarming Model
	Applying Chebyshev Distribution
	Experiment Design
	Interpolation
	Results and Conclusions
	References

