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Abstract—In previous work, we introduced a novel swarming
interpolation framework and validated its effectiveness on static
fields. In this paper, we show that a slightly revised version of this
framework is able to track fields that translate, rotate, or expand
over time, enabling interpolation of both static and dynamic
fields. Our framework can be used to control autonomous mobile
sensors into flexible spatial arrangements in order to interpolate
values of a field in an unknown region. The key advantage to this
framework is that the stable sensor distribution can be chosen
to resemble a Chebyshev distribution, which can be optimal for
certain ideal geometries.

I. INTRODUCTION

Autonomous monitoring of terrestrial, maritime and at-
mospheric fields requires the coordination of sensor-equipped
mobile nodes. Many tasks, such as monitoring the extent of
the Gulf Oil Spill, demand the deployment of large numbers
of relatively simple but coordinated devices (i.e., a swarm)
rather than the use of small numbers of sophisticated devices
(e,g, [4]). While there have been many efforts dedicated to
determining the boundary of a measured field, it is often the
case that investigators need to know the full field, not just
the position of the boundary. We refer to this challenge as
the swarm interpolation problem. In previous work [8], we
introduced a framework that allows mobile sensors to distribute
themselves into special configurations that let them accurately
interpolate the whole field in which they are deployed.

Most previous work (Section II) has been based on the
assumption that the field in which the sensors are deployed
is static, that is, that it does not change over time. This
assumption is valid if the monitored field does not change
spatially. For example, if one is interested in monitoring
temperature over a specific geographic region, then there is
no need to change the location of the sensors. However, if the
field’s changes are spatial, then the sensors must move with
the field in order to track the changes the field is experiencing.

In this paper, we present a study of the tracking ability
of a slight modification of the framework introduced in [8]
(Sections III–VIII). We also present an analysis of the spatial
distributions obtained with this framework when the sensors
reach an equilibrium. Together, these results show that inter-
polation of both static and dynamic fields is possible with
swarms of mobile sensors. However, there is no free lunch.
Our results suggest that as the swarm size increases, that is,
as the accuracy of the interpolation is increased, the tracking
performance decreases as measured by the speed at which the
equilibrium state is reached. Thus, with fixed size swarms there
is a trade-off between interpolation accuracy and speed.

II. RELATED WORK

While searching for the location of a contaminant field
and identifying points of high concentration within that field
is a relatively simple and well-studied problem, mapping
out the interior of such a field, the swarm interpolation
problem, is more challenging. Rather than locating one or
more peak points, mapping the interior of a field requires
that data be gathered at a variety of positions throughout it,
with enough resolution and coverage to make a reasonable
estimate of the field as a whole. One approach consists in
adapting a population-based search algorithm in order to record
measurements along the search paths, and use the recorded
measurements to interpolate the field. Turduev [13] et. al.
take this approach. Their algorithm, based on particle swarm
optimization (PSO) [5], uses a group of nodes to search for
areas of peak concentration within a field. Nodes calculate their
movement in steps, using the positions of the highest values
found by themselves and their neighbors during the previous
step to determine their next destination. While the goal of the
algorithm is for nodes to settle on peak values of the field,
the algorithm also records the sensed values at each step,
and uses those values to compute a regression for the field.
However, since the PSO algorithm is built for optimization and
not for full coverage, there is no guarantee that all significant
regions within the field will be represented by the gathered
data. Additionally, the data is gathered over time, which means
that if the field is changing, then the data will not accurately
represent the field at any given point in time.

One way to ensure that the field is fully represented by
the data is to employ a coverage algorithm to distribute sensor
nodes throughout the region. Cortes [3] presents an algorithm
that divides the region into Voronoi partitions based on the
current positions of the sensors, and moves the sensors in order
to equalize the area covered by the regions. Krause [9] presents
an algorithm that distributes sensors based on the concept of
mutual information. However, while these algorithms succeed
in spreading nodes throughout a region, they are optimized for
detecting events within the field and not for gathering data at
the locations of the nodes. Moreover, these algorithms rely on
the structure of a field being known in advance, rather than
adapting to the field on the fly, as would be necessary for a
survey of an unknown region.

A third approach consists in dynamically adapting the
positions of a group of nodes to fit the shape of the monitored
region. An example of this approach is given by Bertozzi et
al. [2], who propose an algorithm for tracking the edge of a
region by treating the nodes as points along a contour, and
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evolving those points using a discretization of an image snake
algorithm to fit the shape of the contaminated region. This
method has the advantage of being able to adapt to a variety
of shapes without knowing any information about the area in
advance. Unfortunately, it places all of the nodes on the outside
edge of the region, limiting the information that can be gained
about the interior.

Kalantar [7] manages to solve the aforementioned issue by
dividing the sensor nodes into two groups, a boundary set that
defines the edge of the region of interest and an interior set that
fills out the inside, with a node’s set membership being self-
determined based on the alignment of its neighbors. Node on
the boundary act to position themselves along the desired edge
through gradient descent, while nodes on the inside maintain
a uniform distribution by being repelled by each other and the
boundary. This places all of the nodes in positions where they
will be useful for sensing information about the field, and is
capable of adapting itself to a variety of shapes.

III. CHEBYSHEV DISTRIBUTIONS AND INTERPOLATION

Our work may be seen as an evolution of Kalantar’s work.
We maintain the basic concept of boundary and interior sets,
but focus more on applying additional controls to the behavior
of the nodes in the interior set. While a uniform interior is
sufficient to reasonably generate a regression of a field, we
have shown evidence in [8] in support of the idea that using a
non-uniform distribution can improve the predictive accuracy
of such a model.

Technically speaking, the problem we tackle with our
framework is called scattered data interpolation [6]. In a nut-
shell, given an input set {(x1, φ1), (x2, φ2), . . . , (xN , φN )},
where N is the number of sensors, xn ∈ R

2 represents the
location of the nth sensor, and φn = f(xn) is the nth sensor’s
measurement of the variable of interest (represented by the
evaluation of the function f , whose definition is not known).
Our goal is to find a function g such that g(x) = φ and that
the difference between g and f at locations different from xn,
n = 1, . . . , N is as small as possible.

When interpolating fields with a large number of mea-
surements, the distribution of interpolating nodes is crucial
for minimizing error. One option is to use low order splines.
Another is to use higher order interpolants, but these produce
large oscillations, and therefore large errors, near the boundary
of the region (this is known as Runge’s phenomenon). One
effective distribution is based on the roots of a Chebyshev
polynomial. (See [1], [12], and the references contained therein
for a general discussion.) The following system yields the roots
of the desired Chebyshev polynomial.

T0(x) = 1, T1(x) = x,

Tn+1(x) = 2xTn(x)− Tn−1(x) (n ≥ 1) (1)

Restricting the domain to [-1,1], for instance, Chebyshev
polynomials can be specified by

Tn(x) = cos(n cos−1 x) (n ≥ 0) (2)

where n is the desired number of roots for the polynomial.
See Fig. 1(a) for an example.

Using the positions of the roots of a Chebyshev polynomial
as interpolation nodes for a 1D field leads to an error formula
of

|f(x)− p(x)| ≤ 1

2n(n+ 1)!
max|t|≤1|f (n+1)(t)|, (3)

where f(x) is the function being interpolated and p(x) is
the interpolation polynomial based on the Chebyshev roots.
This distribution is optimal for polynomial interpolation. The
distribution can be further extended from 1D into a 2D circle.
One example is shown in Fig. 1(b), where the points along
the radial axis are distributed according to the roots of a
Chebyshev polynomial and along the angular axis they are
uniformly distributed.

While a mesh-aligned Chebyshev distribution, with all of
the data points placed on a polar grid, is traditionally used for
polynomial interpolation, aligning a swarm to a grid is a diffi-
cult problem when the area to be covered is not a priori known.
However, generating a similar but meshless distribution, with
sensors arranged in an arbitrary alignment but a similar overall
density, is a simpler matter. Typical swarming algorithms
will produce meshless uniform distributions of sensors, so in
order to achieve a Chebyshev distribution, a special form of
swarming will need to be performed, one that is sensitive to the
positions of the sensors within the swarm, not just the relative
positions of their neighbors. We finesse a standard swarming
algorithm by altering the distances measured between sensors.
If the perceived positions of the sensors are transformed such
that a Chebyshev distribution appears to the sensors to be a
uniform distribution, then the sensors will naturally settle into
an arrangement which is extremely close to an appropriate
Chebyshev distribution as they swarm.

In this paper, we present a model for achieving this
distribution, by means of the previously mentioned coordi-
nate transformations. The system is specifically intended for
achieving Chebyshev-like distributions, but the framework is
flexible enough to also allow for alternate distributions to be
included. This could be particularly useful if certain features
require more attention in the sensed region, such as a specific
value range or subregion. This framework will also work well
with various base swarming algorithms that may or may not
produce uniform distributions.

IV. THE SWARM INTERACTION MODEL

The swarming algorithm uses a basic control model

d

dt
�xi =�vi (4)

d

dt
�vi =κ(�di − �vi) (5)

where �xi and �vi are the position and velocity vectors of the ith

sensor, �di is the desired velocity vector for the sensor and κ
is a rate constant. The desired velocity is the sum of pairwise
interactions from the other sensors in the swarm:

�di =
∑
j∈Ni

�dij (6)

where Ni is the set of indices of sensors within communication
range of sensor i. Each interaction between a pair of sensors
represents a balance between mutual repulsion and attraction
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(a) Chebyshev polynomial with 25 roots (b) Circular mesh-aligned radial Chebyshev distribution

Fig. 1: Chebyshev distribution: 1D vs. 2D

to greater levels of the sensed field. The specific pairwise
interaction model is

�dij = V

[(
φ(�xi)− φ�

1− φ�

)
e−k1rij + aφ�e

−k2rij

]
�rij
rij

(7)

where the function φ is the sensed value at a given position, V
is a characteristic velocity scale for the sensors, φ� is the edge
threshold for the sensed region, a � 1 is a small parameter,
1/k1 and 1/k2 are characteristic length scales, �rij = �xi − �xj

and rij = ‖�rij‖. Furthermore, we assume the sensed function
is normalized so that 0 ≤ φ ≤ 1.

The interaction between two given sensors is driven by
two competing objectives. First, in order to interpolate across
an entire region, the sensors must occupy that region. Given a
lack of other cues, a group of sensors located within the sensed
region should spread to occupy that region, and so a repulsive
element is necessary. However, the sensors should not spread
indefinitely, as they ultimately need to align themselves within
the region, not outside of it. A factor is therefore needed to pre-
vent sensors from spreading beyond the edge of their desired
region. To allow the sensors to spread across a region while
being constrained by its edge, the sensors behavior depends on
the difference between their current sensor readings and a set
field strength, with the influence felt by the sensors directly
proportional to that difference. Rather than adopting a static
edge, our solution was to alter the behavior of sensors based
on the difference between the field strength they sense at their
location and a set field strength that serves as the edge of the
region. In the first term of (7), the influence felt by a sensor
is set to be directly proportional to that difference. Sensors
within the region try to move away from others nearby, and
sensors outside the region move toward nearby sensors. The
second term of (7) corresponds to a small field-independent
repulsive force to prevent sensors on the outside from overly
converging and to prevent sensors directly on the edge from
becoming completely locked into position.

This model will yield a uniform spread across the region of
interest. The modifications necessary to produce a Chebyshev
distribution are described in the next section.

V. APPLYING CHEBYSHEV DISTRIBUTION

The presentation that follows assumes the reader is fa-
miliar with our work presented in [8]. Here, we focus on
the modifications that make tracking possible. The method to
change the swarm’s equilibrium distribution from uniform to
Chebyshev-like is based on the algorithm for yielding a star-
like Chebyshev distribution presented in [8]. This algorithm
interprets the region of the swarm as a set of line segments
extending from the center of the region to the edges of the
swarm, and remaps the coordinates along those line segments
so that a Chebyshev distribution along one of those segments
appears uniform in virtual coordinates, while the distribution
perpendicular to the segments remains unchanged between the
real and virtual systems.

Following the assumption that nodes do not have imme-
diate access to the positions of all other nodes in a swarm,
the algorithm described in [8] must be modified to incorporate
the fact that each node must develop its own estimates for
the midpoint and edge distances. The modified version of the
virtual coordinate algorithm is thus

r =
√
(x− xmid)2 + (y − ymid)2 (8)

θ = tan−1

(
y − ymid

x− xmid

)
∗ (9)

vr = redge cos
−1

(
r

redge

)
(10)

vθ = θ, vx = vr cos(vθ), vy = vr sin(vθ) (11)

where xmid is an array containing the local estimates for
the x coordinate of the midpoint of the swarm, ymid is an
array containing the local estimates for the y coordinate of the
midpoint of the swarm, and redge is an array containing the
local estimates for the edge distances for each node.

∗In our implementation, we use the function atan2.
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A method for generating these estimates is presented in the
next section.

VI. EDGE DISCOVERY

On a basic level, swarming can be carried out simply
by using a node’s knowledge of it’s immediate neighbors.
However, in order for nodes to be able react to the edges and
centroids of swarms, they must have access to a greater range
of information. Since for many nodes, the edges and midpoint
will not be directly visible, they must rely on their neighbors to
relay that information to them in a time and communication-
efficient manner.

While the centroid of a swarm can be exactly determined
by averaging the positions of all the nodes, this method has
definite disadvantages when applied in real time. In order
for nodes to be aware of each others’ positions, they must
be constantly broadcasting their positions across the swarm,
as well as relaying the broadcasts sent by other nodes. This
requires either an excessive number of broadcasts if messages
are immediately relayed or excessively long messages if posi-
tions are stored for later broadcast, in an environment where
communication windows are likely to be short. An alternative
is to generate an approximation of the center, and pass that
single approximation along instead of the entire set of node
positions. If that approximation is passed as part of the existing
neighbor communications, then no additional messages will
be required, and the existing message will only need to be
lengthened by the position of the midpoint.

Since the swarm exists as a set of nodes, an obvious
solution is to chose one or more of those nodes to represent
the center of the swarm. Likewise, nodes on the outside edge
can represent points along the edge of the swarm. If a node
knows its nearest center representative, and its nearest edge
representative, it thus has an estimate of its distance to the
middle and edge of the swarm, and thus how to determine its
virtual coordinates. However, a way is needed to determine
which nodes to choose and how to propagate those choices
without relying on costly global information.

Since there is no centralised authority for the swarm, the
points that act as edge representatives are self-selected. To
determine whether a node should identify itself as an edge,
nodes look at the positions of their immediate neighbors,
checking whether there is an empty arc of at least 90 degrees
between two of them. If such a gap exists, the node assumes
that it is viewing a region of empty space, and is thus located
on the edge of the swarm.

Once the nodes on the outside edge of the swarm have
been identified, a hierarchy of depth can then be established,
with the nodes on the outside edge of the swarm having the
smallest depth, and the depth increasing as the distance to the
edge increases. The middle of the swarm will then be the set of
nodes with the greatest depth. If the edge points are assigned
a depth of 0, the depth of every other node can be determined
by looking at the depths of all adjacent neighbors, which can
be sent as part of their messages, and choosing a depth that is
1 greater than the shallowest adaject depth seen. The closest
edge node can be propagated through this method as well, with
every node choosing its closest edge to match the closest edge
chosen by the closest shallow neighbor.

After the depth information has had enough cycles to
propagate from the outside edges to the rest of the nodes
in the swarm, there will be a set of nodes that cannot see
any nodes deeper than themselves, though they may see other
nodes at the same depth. These nodes select themselves as
deep representatives, and pass their information back towards
the outside in a similar manner as the shallow representatives.
Nodes look for neighbors that are deeper than them, and store
and pass on the position of the deep representative sent by the
furthest deeper neighbor.

When determining adjacency for the purposes of this
algorithm, ability to communicate is likely to be insufficient.
For example, if the radios of the nodes are sufficiently powerful
that nodes can communicate with others at least halfway across
the swarm, then every inside node will have a hop count of
1, which would render the algorithm useless. Therefore, to
ensure that the structures formed this way are reasonable, the
algorithm sets limits on the maximum distances other nodes
can have and be considered adjacent. When searching for
shallower neighbors, the adjacency distance is set to twice
the distance of the closest neighbor. When searching for
deeper neighbors, the adjacency distance is set to four times
the distance of the closest neighbor, in order to minimize
the occurance of cases where a deeper node exists but is
outside of the adjacency range. While the presence of an
unusually close neighbor can cause this adjustement to fail,
these cases are temporary due to the repulsive effects of the
swarming algorithm, and do not appear to last long enough to
significantly distort the behavior of the swarm. Being based
on neighbor distance rather than a fixed parameter, this allows
the algorithm to automatically adjust itself to varying node
densities, including those produced through the Chebyshev-
like distribution.

In our system, nodes effectively group themselves into two
sets of trees. One set leads from the nodes on the outside edge,
and specifies which other nodes will use those nodes’ points to
represent their closest edge. Another set leads from the deepest
nodes, and specifies which other nodes will use those nodes’
points to represent the center of the swarm. Both of these trees
are able to handle changes in the structure of the swarm; if
an edge node ceases to be on the edge, it will adjust its depth
to 1 in the next cycle based on its visibility of other edge
nodes, and any nodes that took their depth from it will either
increase theirs as well or switch to another. If a central node
reduces its depth or a deeper neighbor appears, it will choose
a new neighbor as its center representative in the next cycle,
and begin to relay that node’s position instead of its own as
the deepest node it knows. An example of the edge and deep
trees formed by a single set of nodes can be seen in Fig. 2.

All of this can be done using the local communication
already used for determining the positions of neighbors. The
messages just need to have the node’s hop count, the last
known position of the edge representative, the last known
position of the center representative, and the hop count of the
deep representative added on, which is not excessive.

One interesting effect of the algorithm worth noting is that
while it will produce representitive midpoints near the true
centroid of the region for circular regions, this is not always the
case. For some region shapes, there may be multiple areas that
are equidistant from the edge enough that there will be multiple
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(a) Detected paths to edges

(b) Detected paths to middle

Fig. 2: Edge and Deep Trees

midpoints, or even a band of midpoints. While this algorithm
will not return the true centroid of the region, this is not
necessarily a bad thing in many cases, since it is likely that the
edge is actually oriented more perpandicularly towards those
points than towards the centroid. The algorithm may therefore
serve to handle those types of regions more accurately than a
global average would. While more detailed testing remains to
be done, the results would likely resemble those found in [10],
which utilizes a similar method for detecting edge distance.

VII. EXPERIMENT DESIGN

For the purposes of testing, the algorithm was implemented
within a modified version of the Qualnet simulation platform,
which handles actions and communications as discrete events,
and simulates delay and signal loss in communications. In
order to minimize signal interference, communication and
computation for each sensor is handled in a staggered manner,
with sensors waking up based on a timer, carrying out the
algorithm, and then broadcasting their information, while the
others passively listen for the broadcasts of others. The com-
munication range is limited by the parameters of the simulated
environment, though the algorithm also has a built-in limit on
the distance at which messages will be accepted.

Three sets of experiments were performed with the algo-
rithm, each based on a different sensed field.

Fig. 3: Translating Circular Field

Each set consisted of multiple experiments, across which
the number of nodes varied, with each experiment run using
50, 100, 200, or 400. In addition, the same configurations were
used for a version of the algorithm with the virtual coordinate
remapping, yielding uniform distributions of sensors across the
region, with the same exterior edge but different interior node
density. Each set therefore contained four Chebyshev runs and
four corresponding uniform runs.

For all of the runs, the sensors were initially placed in a
uniform rectangular grid spanning from the coordinates [0,0] to
[1000,1000], though they flowed beyond those boundaries dur-
ing the runs. The parameters used for the swarming algorithm
were Ffactor = .01, a = 100, Rscale = 200, and Rfactor = .02.
The target edge strength for all fields was edgevalue = .5.
The scaling factor for acceleration was κ = 1. The fields used
in the experiment were specified by a function of the x and
y coordinates, with the coordinates rescaled from the initial
range of [0,1000] to [0,1].

The runs consisted of two 4000 second segments. In the
first, the field sensed by the nodes evolves over time, with the
swarm adapting to fit the changing field. In the second, the
evolution of the field ceases, giving the nodes time to settle
into stable positions. The fields we worked with are:

1) Translating Circular Gaussian Field. This field
takes the form of a circular bell shape which begins
centered on the coordinates [500,500] and translates
over a period of 4000 seconds to a new center of
[-500,-500]. It is specified by the equation

φ(x, y, t) = e−(
1

2·5002 )((x−(500− t
4 ))

2+(y−(500− t
4 ))

2)

(12)
as shown in Fig. 3.

2) Flexing Elliptical Gaussian Field. This field takes
the form of an elliptical bell shape which remains
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Fig. 4: Flexing Elliptical Field

centered at [500,500] but alters its x and y widths
over time. It is specified by the equation

φ(x, y, t) = e
−( 1

2·5002 )
[(

x−500

.75+ t
8000

)2

+

(
y−500

1.25− t
8000

)2]

(13)

as shown in Fig. 4.
3) Rotating Elliptical Gaussian Field. This field takes

the form of an elliptical bell shape which remains
centered at [500,500] but rotates around that position
over time. It is specified by the equations

φ(x, y, t) =

φ0

(
cos

(
πt

8000

) · (x− 500)− sin
(

πt
8000

) · (y − 500) + 500,
sin

(
πt

8000

) · (x− 500) + cos
(

πt
8000

) · (y − 500) + 500
)
,

where φ0(x, y) is defined by

φ0(x, y) = e
−( 1

2·5002 )·
(
( x−500

.75 )
2
+( y−500

1.25 )
2
)

(14)

as shown in Fig. 5.

VIII. RESULTS

A. Spatial Distribution at Equilibrium

A tracking swarm will not be of great use for interpolation
if the nodes at equilibrium end up arbitrarily distributed. The
main advantage of the system described in this paper is that
one can control the sensing nodes’ distribution at equilibrium.
We exploit this feature to generate distributions that resemble
ideal Chebyshev distributions. In this section, we address
the fundamental question of how much resemblance exists
between the spatial distribution obtained with the swarming
rules described in this paper (referred to as swarm distribution)
and an ideal Chebyshev distribution on a circular field. Our
hypothesis is that if the swarm distribution is close to an
ideal Chebyshev distribution on a circular field, the swarm

Fig. 5: Rotating Elliptical Field

distribution will also be good for interpolation of noncircular
fields, or at least better than a uniformly distributed swarm.

First, we need to establish the ideal Chebyshev distribution
on a circular field. The extension of a univariate Chebyshev
distribution to more than one dimension depends on the shape
of the interpolation domain (see, e.g., [11], [14]), so there is
no universal two-dimensional Chebyshev distribution. Conse-
quently, we explore two possibilities for a circular domain.
In both cases, we populate with nodes a series of concentric
rings with radii equal to the roots of a Chebyshev polynomial
of degree 2n, where n is the number of rings. In case (a), each
ring contains the same number of nodes uniformly distributed
in the azimuthal direction (see Fig. 1 (b)). In case (b), the
number of nodes per unit of length along the azimuthal
direction is constant across rings. The result is an increasing
number of nodes as the radius of a ring increases (see Fig. 6).

We performed an interpolation experiment with the same
number of nodes (N = 186) but with different values for the
shape parameter (a ∈ [1, 10] in increments of 0.05) on a static
Gaussian field (Eq. 3) with . The results are shown in Fig. 7.
Clearly, the behavior of the second variant of a Chebyshev
distribution (case (b)) is superior than the first variant (case
(a)). We therefore adopt the second case as the reference
Chebyshev distribution for the rest of the paper. Hereafter,
we refer to this reference distribution as the ideal Chebyshev
distribution.

Let us now turn our attention to comparing the swarm
distribution with the Chebyshev distribution. To do this, we
work on the polar rectangle [r × θ], where r ∈ [0, 1] and
θ ∈ [0, 2π]. In the ideal Chebyshev distribution, a certain
number of nodes share the same radial coordinate and only
differ in their azimuthal coordinate. With our swarming algo-
rithm, it is practically impossible to obtain exactly equal radial
coordinates for the interpolation nodes. Therefore, we bin the
radial axis and perform the comparison in terms of densities of

164164



-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Fig. 6: Chebyshev Distribution with Constant Azimuthal Den-
sity of Nodes

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

0 2 4 6 8 10

R
M
S
 
E
r
r
o
r

Shape parameter

RMS Error as a function of Shape Parameter

Case (a) Chebyshev

Case (b) Chebyshev
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points per unit of length in the positive radial direction. Fig. 8
shows histograms that correspond to the “spectra” of the ideal
Chebyshev, the uniform and the swarm distributions with 421
nodes, which are distributed across 16 rings. The centers of
each bar are the actual locations of the roots of a Chebyshev
polynomial of degree 32 (2× 16) in the range [0, 1].

By centering the data around the exact location of a univari-
ate Chebyshev polynomial, we can measure the deviation of
the swarm distribution from the ideal Chebyshev distribution
with a single number: the average ratio of nodes per bin
(ARNB). Each ratio can be greater than or equal to one. If the
ratio is one, then both distributions have the same number of
nodes at that bin. Figure shows the ratios per bin of the uniform
and swarm distributions with respect to the Chebyshev distri-
bution. The ARNB for the uniform distribution is 1.1754, and

the ARNB for the swarm distribution is 1.0683, which shows
that the swarm distribution more closely resembles a Cheby-
shev distribution than a uniform distribution (as expected).
In particular, Fig. 8 (d) shows that the swarm distribution
approximates the Chebyshev distribution relatively accurately
around the center of the radial axis and less accurately toward
the extremes. Near the center of the field we do not expect this
discrepancy to cause many problems since only a few nodes are
in this area. The difference near the edge is more significant;
however, as a matter of fact, many of these nodes lie outside
the region of interpolation and they may be discarded before
performing interpolation. The uniform distribution has more
nodes in the interior than the Chebyshev distribution and fewer
nodes close to the edges. To conclude, although the swarm
distribution is not exactly equal to a Chebyshev distribution,
it is indeed a good approximation.

B. Field Tracking

While the internal distribution of the swarm is significant,
another important factor is whether the swarm as a whole
can successfully move to track the evolving field. The system
proposed in this paper is capable of tracking dynamic fields
(see Fig. 11) so we consider two means of measuring the
performance of the tracking.†

The first measure is based on the distance between the mid-
point of the swarm and the midpoint of the two-dimensional
bell curve formed by the sensed field. As the field evolves the
midpoints of both it and the swarm will shift, so this serves to
track the ability of the swarm to keep up with the motion of a
field’s curve. For cases where the center of the curve does not
shift, such as the flexing and rotating fields, this measure will
be less relevent, and so was not considered. For the translating
fields, the values for all cases are given in Fig. 9.

In all cases, the value for the distance starts near zero,
since the nodes were initially placed near the center of the
field’s curve. As the field evolves, all of the swarms showed
issues in keeping up with the motion of the translating field,
shown by an increase in the distance until the halfway point
of the simulation at 4000 seconds. For most of the swarms,
the increase seems to be rapid at first but slowly tapering off,
which might be due to less interference between nodes as more
of them transition to following the field rather than trying to fill
it. Swarms with smaller node counts appear to have superior
performance, as to uniform distributions over Chebyshev ones.
The 200 and especially the 400 node Chebyshev distributions
had particular difficulty, with a massive portion of the nodes
falling behind.

After the midpoint of the simulation is reached and the field
ceases to evolve, the distance between the centers begins to fall
back to zero as the nodes settle into the field. This decrease is
initially rapid, but slows as the swarm stabilized. Like before,
the smaller and uniform distributions were quicker to settle,
with the larger Chebyshev distributions failing to settle by the
time the simulation concluded, though they would likely have
shown similar behavior to the others given more time.

In general, the distance plots seem to show that while our
swarming algorithm is capable of following translating fields to

†Please go to http://www.math.udel.edu/∼mmontes/papers/swarmtracking/
to access videos showing the system in action.
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(a) Chebyshev distribution without noise
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(b) Uniform distribution
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(c) Swarm distribution
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Fig. 8: Spectra of the ideal Chebyshev distribution, the uniform and the swarm distributions with 421 nodes. Fig. (d) shows the
ratio of nodes per bin for the uniform and swarm distributions with respect to the ideal Chebyshev distribution (A value close
to 1 is better).

a certain extent, the algorithm cannot be scaled up indefinitely,
due to distributions with relatively large node counts showing
a tendency to fall behind and collapse on themselves while
attempting to follow smaller curves. It is also yet unclear
whether smaller swarms that attempt to follow a field for an
extended period of time will continue to increase in distance
from the center. Fortunately, in many cases swarms seem to be
able to successfully recover from tracking problems, though it
takes a time scale similar to the one they spent following the
moving field.

The second measure is based on the proportion of all
nodes in the swarm that fall within a desired region of the
field. This measures both the swarm’s ability to keep up with
motion, which is relevant to translating fields, and the ability
to conform to shifting regions, which is relevant to the flexing
and rotating fields.

For this evaluation, it may be desirable to adjust the value
of the margin determining what lies inside and outside of

the region. While the swarming algorithm was configured to
transition at an edge value of .5, in practice the swarm tends
to extend further beyond, as the non-scaling repulsion factor
continues to apply to nodes on the edge, pushing them further
outwards. Therefore, a lower cutoff may prove to provide a
more useful indication of how well the swarm is conforming
to the field. Fig. 10 shows an example of how a uniform group
of 400 nodes fit into translating, flexing, and rotating regions
given an edge value of .3, which even then proves insufficent
to completely capture the full scope at rest.

For the translating fields, the results of the analysis were
similar to the analysis of the distances between midpoints. The
proportion of nodes within the region falls as the field evolves
and the nodes struggle to catch up, but after the midpoint is
passed, the nodes rapidly begin to catch up and the proportion
rises until it reaches the stable rest value.

For the flexing and rotating fields, the plots seem to show
that the swarm is tracking the general shape of the region
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Fig. 9: Distances between the field and swarm midpoints for
the translating field

Fig. 10: Proportion of nodes with a sensed value greater than
.3 in a 400 count uniform swarm by field type

well. Once the swarm fills out the initial region, changes in the
proportion of nodes that remain within the region are relatively
tiny, even as the field deforms itself. Larger node counts and
Chebyshev distributions seem to have their nodes spread out
wider, and thus lower proportions of those nodes within the
region, possibly being due to the nodes being packed in more
tightly along the edges, and thus spreading out further. One
noticeable difference between the flexing and rotating fields
was that for many of the simulations involving flexing fields,
a minor but rapid increase was detectable right when the field
ceased to evolve, while that effect was far less visible for
rotating fields.

Overall, flexing and rotating fields seem to maintain their

overall shapes well under the applied conditions, while trans-
lating fields did much more poorly.

IX. CONCLUSIONS

When dealing with distributed sensing tasks, one has to
decide how to spatially distribute the sensor nodes at one’s
disposal. The chosen spatial arrangement typically depends
on the task at hand, and therefore there is no single spatial
arrangement of sensors that will result in optimal performance
for all possible distributed sensing tasks. Moreover, the envi-
ronmental conditions in which the sensing task takes place may
change over time. Ideally, therefore, sensors should relocate
themselves, if they are mobile, or be relocated by the system
designer in order to maintain an acceptable performance.

The work presented in this paper is aimed at tackling both
of the aforementioned issues: optimal spatial distribution and
rearrangement upon change detection. To show the effective-
ness of our approach, we focused on the task of scalar field
interpolation from scattered field measurements. The first issue
is dealt with with an approach based on solid mathematical
concepts. In particular, knowing that placing the interpolation
nodes at the positions of the roots of a Chebyshev polyno-
mial is the optimal case for polynomial interpolation in one
dimension, we devised a set of swarming rules to approximate
a Chebyshev distribution in two-dimensions. We showed in
Section VIII-A that the resulting distributions approximate
well the ideal Chebyshev distribution, especially in the interior
of the sensed field. The second issue is tackled directly by
the swarming rules, which are first and foremost designed to
keep a swarm of mobile sensors together and within a certain
range, but that also allow for tracking of fields that translate,
expand, contract, and rotate over time. In Section VIII-B, we
demonstrated the ability of the system to follow and adapt
to these kinds of fields. However, our analysis showed that
the system exhibits a trade-off between accuracy and speed
that is exacerbated with large numbers of sensors. We believe
that future work should be aimed at improving the proposed
system’s scalability and in extending it to three-dimensional
scenarios.
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