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Abstract
The benchmark functions and some of the algorithms proposed for the special session
on real parameter optimization of the 2005 IEEE Congress on Evolutionary Computa-
tion (CEC’05) have played and still play an important role in the assessment of the state
of the art in continuous optimization. In this note, we show that if bound constraints
are not enforced for the final reported solutions, state-of-the-art algorithms produce
infeasible best candidate solutions for the majority of functions of the IEEE CEC’05
benchmark function suite. This occurs even though the optima of the CEC’05 func-
tions are within the specified bounds. This phenomenon has important implications
on algorithm comparisons, and therefore on algorithm designs. This note’s goal is to
draw the attention of the community to the fact that some authors might have drawn
wrong conclusions from experiments using the CEC’05 problems.

Keywords
Continuous optimization, bound constraints, feasible solutions, IPOP-CMA-ES, MA-
LSch-CMA.

1 Introduction

The special session on real parameter optimization of the 2005 IEEE Congress on Evo-
lutionary Computation (CEC’05) has played an important role in evolutionary com-
putation and other affine fields for two reasons. First, it provided a set of 25 scalable
benchmark functions that anyone can use to evaluate the performance of new algo-
rithms. Those 25 functions have become a standard benchmark set that researchers use
to compare algorithms. The central role that this benchmark function suite plays is il-
lustrated by the 800 citations (according to Google Scholar as of January 2014) to the
original technical report that introduced it (Suganthan et al., 2005). Second, it served to
assess the state of the art in continuous optimization. In particular, the best perform-
ing algorithm of the special session, IPOP-CMA-ES (Auger and Hansen, 2005), is since
then considered to be a representative of the state of the art in continuous optimiza-
tion. Consequently, it is nowadays standard practice to compare the results of a new
algorithm to the published results of IPOP-CMA-ES.
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When evaluating algorithms, all should be run under the same conditions. Of
particular interest in this note here is the consideration or not of bound constraints. If
we consider the definition of benchmark problems in continuous optimization, we may
distinguish the following three situations.

S1 Bound constraints are defined and are to be enforced at any stage of the search
process—solutions outside the bounds are invalid.

S2 Bound constraints are defined and are enforced for the final reported solutions;
however, solutions outside the bounds may be evaluated and used to drive the
search process.

S3 No bound constraints are defined but bounds may be indicated to provide an ini-
tialization range.

The definition of each CEC’05 benchmark function states that each component of
the solution vector x must be a value in an interval [xmin, xmax], xmin < xmax. There
are two exceptions, which are functions f7 and f25, where the given interval specifies
only an initialization range, and not a bound constraint. For the other 23 functions,
their global optima are guaranteed to be within the specified bounds; on functions
f8 and f20, the global optima are known to be on the bounds. However, later in the
report it is mentioned that “All problems, except 7 and 25, have the global optimum within
the given bounds and there is no need to perform search outside of the given bounds for these
problems.” (Suganthan et al., 2005) (p. 40). This remark can be interpreted as allowing
the algorithms to search outside the given bounds. While together with the definition
of the CEC’05 benchmark functions this would indicate a type S2 situation, this remark
may have led to misinterpretations. In this paper, we give evidence that some claims
of statistically significantly better performance than IPOP-CMA-ES (e.g., Müller et al.
(2009); Molina et al. (2010)) may not be valid because the authors may have interpreted
the remark as a suggestion and reported results as when facing situation S3.

We became aware of possible confusions between situations S2 and S3 while re-
porting results for the CEC’05 benchmark functions when running experiments with
the C implementation of CMA-ES available from Hansen’s website, http://www.
lri.fr/˜hansen/cmaes_inmatlab.html, to implement IPOP-CMA-ES. This C
version of CMA-ES does not use an explicit bound constraint handling mechanism.
When running this code (without bound constraint handling) on the CEC’05 bench-
mark functions, we noticed that on a majority of the benchmark functions the best
solutions found do violate the bound constraints even though their global optima are
known to be inside the bounds for 23 of the 25 functions. While it is known that this
can happen on other functions,1 we were surprised by the high frequency with which
this phenomenon occurs on the CEC’05 benchmark function set.

This observation raises the more general and critical issue of validity of published
results that rely on the CEC’05 benchmark set. In fact, the vast majority of published
articles do not explicitly report whether a bound constraint handling mechanism was
used and if they do, many do not describe it. Perhaps more importantly, claims that
an algorithm outperforms IPOP-CMA-ES in a statistically significant way (e.g., (Müller
et al., 2009; Molina et al., 2010) may not be valid because the comparison that supports
those claims may include algorithms that enforce bound constraints in some way (as in
S1 or S2) and algorithms that do not (as in S3).

1One example is Schwefel’s sine root function (Schwefel, 1981), which has its global optimum outside the
usual feasible search space defined by bound constraints.
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To show how misleading such a comparison can be, we report experimental re-
sults on the impact of handling bound constraints with IPOP-CMA-ES. We evaluate
three variants of the C version of IPOP-CMA-ES. In the first variant, bound constraints
are never enforced (we refer to this variant as IPOP-CMA-ES-ncb, where ncb stands for
“never clamp bounds”); it simulates situation S3. The second is a variant in which we
introduce a mechanism to enforce bound constraints (acb for “always clamp bounds”;
this variant is referred to as IPOP-CMA-ES-acb). In particular, we clamp a variable’s
value that is outside the variable’s feasible domain dimension by dimension to the
closest boundary value; that is, if xi < xmin we set xi = xmin and if xi > xmax we set
xi = xmax before evaluating these solutions and continuing with the algorithm execu-
tion. Note that this variant can tackle both situations, S1 and S2: in the S2 case it can be
seen as a simple way to handle bound constraints and to ensure that final solutions are
feasible. Additionally, we have run experiments with a variant that addresses directly
situation S2; in this variant, we let IPOP-CMA-ES search outside the bounds without
restrictions but take care that the final solution reported is the best feasible solution
that has been identified during the search process. The results with this latter version
were very poor and we report them only on the article’s supplementary material (Liao
et al., 2011).2 The same three variants are tested using a memetic algorithm, MA-LSch-
CMA (Molina et al., 2010), which is a recent memetic algorithm that uses CMA-ES as a
local search and which was reported to perform better than IPOP-CMA-ES in a statis-
tically significant way.

2 Experiments on enforcing bound constraints

In the first experiment, we followed the protocol described by Suganthan et al. (2005),
that is, we ran IPOP-CMA-ES using its default parameter settings 25 times on each
function and recorded the evolution of the objective function value with respect to the
number of function evaluations used. The maximum number of function evaluations
was 10000 ·D, whereD ∈ {10, 30, 50} is the dimensionality of a function. The algorithm
stops when the maximum number of evaluations is reached or the error is lower than
10−8. Error values lower than this optimum threshold are considered equal to 10−8.

We compare IPOP-CMA-ES-ncb and IPOP-CMA-ES-acb in Table 1.3 The two-sided
Wilcoxon matched-pairs signed-rank test at the 0.05 level of the error of first type was
used to check for statistical differences on each function. Depending on the dimen-
sionality, in 14 to 17 functions IPOP-CMA-ES-ncb obtains final solutions outside the
bounds. In most of the functions for which infeasible solutions are found, all the 25
runs return final solutions that are outside the bounds. We have observed statistically
significant differences between IPOP-CMA-ES-ncb and IPOP-CMA-ES-acb when the fi-
nal solutions of IPOP-CMA-ES-ncb are outside the bounds. While a priori we expected
that IPOP-CMA-ES-ncb gives worse results than IPOP-CMA-ES-acb as for these func-
tions the optima are known to be inside the bounds, IPOP-CMA-ES-ncb outperforms
IPOP-CMA-ES-acb in six functions (f9, f12, f18, f19, f20 and f22 in dimensions 30 and
50). In all these functions except f9 all solutions obtained by IPOP-CMA-ES-ncb are
outside the bounds.

Analogously, Table 2 shows the performance of ncb and acb versions for MA-LSch-
CMA (MA-LSch-CMA is run using default parameter settings). Again, version ncb ob-

2This version is referred to as kbf for “known best feasible” in the supplementary material.
3The results in Tables 1, 2 and 3 are based on average errors. Additional tables are given in the supple-

mentary pages to this paper (Liao et al., 2011); they show the median results and more detailed information
such as the best, 0.25 quartile, median, 0.75 quartile and worst error values for each function.

Evolutionary Computation Volume x, Number x 3

Evolutionary Computation Just Accepted MS.
doi:10.1162/EVCO_a_00120
 by the Massachusetts Institute of Technology



T. Liao, D. Molina, M. A. Montes de Oca and T. Stützle

Table 1: The comparison between IPOP-CMA-ES-ncb and IPOP-CMA-ES-acb over 25
independent runs for each of the CEC’05 functions except f7 and f25 (these two func-
tions are excluded as for these only an initialization range is specified). “�” denotes
that all 25 final solutions are outside the bounds. “�” denotes that some but not all of
the 25 solutions are outside the bounds. Symbols <, ≈, and > denote whether the per-
formance of IPOP-CMA-ES-ncb is statistically better, indifferent, or worse than that of
IPOP-CMA-ES-acb according to a two-sided Wilcoxon matched-pairs signed-rank test
at the 0.05 α-level. The average errors that correspond to a statistically better result
are highlighted. The numbers in parenthesis at the bottom of the table represent the
frequency of <, ≈, and >, respectively.

fcec
10 dimensions 30 dimensions 50 dimensions

ncb acb ncb acb ncb acb
f1 1.00E−08 ≈ 1.00E−08 1.00E−08 ≈ 1.00E−08 1.00E−08 ≈ 1.00E−08
f2 1.00E−08 ≈ 1.00E−08 1.00E−08 ≈ 1.00E−08 1.00E−08 ≈ 1.00E−08
f3 1.00E−08 ≈ 1.00E−08 1.00E−08 ≈ 1.00E−08 1.00E−08 ≈ 1.00E−08
f4 1.00E−08 ≈ 1.00E−08 2.44E+03 � ≈ 6.58E+02 1.32E+05 � > 1.43E+04
f5 1.00E−08 � ≈ 1.00E−08 2.30E+01 � > 1.00E−08 7.91E+02 � > 7.41E−02
f6 1.00E−08 ≈ 1.00E−08 1.00E−08 ≈ 1.00E−08 1.00E−08 ≈ 1.00E−08
f8 2.01E+01 � ≈ 2.00E+01 2.07E+01 � > 2.04E+01 2.11E+01 � > 2.09E+01
f9 1.59E−01 ≈ 1.59E−01 1.01E+00 < 1.87E+00 1.12E+00 � < 4.36E+00
f10 1.19E−01 ≈ 3.18E−01 1.37E+00 ≈ 1.44E+00 2.36E+00 ≈ 2.89E+00
f11 6.44E−01 � > 1.00E−08 6.36E+00 � > 7.17E−02 1.49E+01 � > 9.94E−02
f12 6.77E+01 � < 4.07E+03 1.38E+03 � < 1.19E+04 7.38E+03 � < 4.25E+04
f13 6.78E−01 ≈ 6.49E−01 2.47E+00 ≈ 2.63E+00 4.31E+00 ≈ 4.44E+00
f14 2.61E+00 � > 1.96E+00 1.28E+01 � ≈ 1.26E+01 2.34E+01 � > 2.28E+01
f15 2.00E+02 � ≈ 2.15E+02 2.01E+02 � > 2.00E+02 2.01E+02 � > 2.00E+02
f16 9.02E+01 ≈ 9.04E+01 7.95E+01 � > 1.48E+01 1.36E+02 � > 1.10E+01
f17 1.33E+02 � ≈ 1.17E+02 4.31E+02 � > 2.52E+02 7.69E+02 � > 1.91E+02
f18 7.48E+02 � > 3.16E+02 8.16E+02 � < 9.04E+02 8.36E+02 � < 9.13E+02
f19 7.75E+02 � > 3.20E+02 8.16E+02 � < 9.04E+02 8.36E+02 � < 9.13E+02
f20 7.62E+02 � > 3.20E+02 8.16E+02 � < 9.04E+02 8.36E+02 � < 9.15E+02
f21 1.06E+03 � > 5.00E+02 8.57E+02 � > 5.00E+02 7.15E+02 � ≈ 6.64E+02
f22 6.38E+02 � < 7.28E+02 5.98E+02 � < 8.10E+02 5.00E+02 � < 8.19E+02
f23 1.09E+03 � > 5.86E+02 8.69E+02 � > 5.34E+02 7.27E+02 � ≈ 6.97E+02
f24 4.05E+02 � > 2.33E+02 2.10E+02 � > 2.00E+02 2.14E+02 � > 2.00E+02

(<, ≈, >): (2, 13, 8) (<, ≈, >): (6, 8, 9) (<, ≈, >): (6, 8, 9)
< or > : 10/23 (43%) < or > : 15/23 (65%) < or > : 15/23 (65%)
functions � or �: 14/23 (61%) functions � or �: 16/23 (70%) functions � or �: 17/23 (74%)

tains many final solutions outside the bounds: this is the case on 18 and 19 functions for
30 and 50 dimensions, respectively. Taking the 50 dimensional benchmark functions as
an example, all functions for which MA-LSch-CMA-ncb outperforms MA-LSch-CMA-
acb are cases in which all solutions obtained by MA-LSch-CMA-ncb are outside the
bounds (f5, f11, f12, f15, f18, f19, f20 and f22).

3 The impact of bound handling on algorithm comparisons

We now focus on the comparison of the average errors between PS-CMA-ES (Müller
et al., 2009), MA-LSch-CMA (Molina et al., 2010), IPOP-CMA-ES-ncb and IPOP-CMA-
ES-05. IPOP-CMA-ES-05 uses the Matlab version of CMA-ES and was used to gener-
ate the results for the CEC’05 benchmark functions presented in (Auger and Hansen,
2005); it handles bound constraints by an approach based on penalty functions, which
is described in (Hansen et al., 2009b). PS-CMA-ES and MA-LSch-CMA are examples of
algorithms that have been reported to outperform IPOP-CMA-ES-05; they use CMA-
ES as a local search operator inside a particle swarm optimization algorithm and a
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Table 2: The comparison between MA-LSch-CMA-ncb and MA-LSch-CMA-acb over
25 independent runs for each of the CEC’05 functions except f7 and f25 (these two
functions are excluded as for these only an initialization range is specified). For an
explanation of the symbols and their interpretation we refer to the caption of Table 1.

fcec

10 dimensions 30 dimensions 50 dimensions
ncb acb ncb acb ncb acb

f1 1.00E−08 ≈ 1.00E−08 1.00E−08 ≈ 1.00E−08 1.00E−08 ≈ 1.00E−08
f2 1.00E−08 ≈ 1.00E−08 2.51E−08 ≈ 1.00E−08 8.99E−01 ≈ 3.06E−02
f3 3.68E+02 > 1.00E−08 4.41E+03 � ≈ 2.75E+04 8.11E+04 � > 3.21E+04
f4 1.00E−08 ≈ 5.54E−03 1.28E+02 < 3.02E+02 5.38E+03 � > 3.23E+03
f5 7.78E+01 � > 6.75E−07 6.12E+02 � < 1.26E+03 2.08E+03 � < 2.69E+03
f6 1.00E−08 ≈ 3.19E−01 2.31E+02 � > 1.12E+00 5.58E+02 � > 4.10E+00
f8 2.00E+01 � ≈ 2.00E+01 2.00E+01 � ≈ 2.00E+01 2.00E+01 � ≈ 2.00E+01
f9 1.00E−08 ≈ 1.00E−08 1.00E−08 ≈ 1.00E−08 1.00E−08 ≈ 1.00E−08
f10 3.14E+00 ≈ 2.67E+00 2.00E+01 � ≈ 2.25E+01 4.80E+01 � ≈ 5.01E+01
f11 4.53E+00 � > 2.43E+00 2.20E+01 � ≈ 2.15E+01 3.95E+01 � < 4.13E+01
f12 2.95E+02 � ≈ 1.14E+02 7.52E+02 � < 1.67E+03 4.56E+03 � < 1.39E+04
f13 5.03E−01 ≈ 5.45E−01 2.04E+00 ≈ 2.03E+00 3.67E+00 > 3.15E+00
f14 2.87E+00 � > 2.25E+00 1.32E+01 � > 1.25E+01 2.30E+01 � > 2.22E+01
f15 2.27E+02 � ≈ 2.24E+02 2.59E+02 � < 3.00E+02 2.29E+02 � < 3.72E+02
f16 9.45E+01 � ≈ 9.18E+01 1.06E+02 � ≈ 1.26E+02 5.91E+01 � > 6.90E+01
f17 1.04E+02 ≈ 1.01E+02 1.66E+02 � ≈ 1.83E+02 1.41E+02 � ≈ 1.47E+02
f18 8.20E+02 � < 8.84E+02 8.22E+02 � < 8.98E+02 8.47E+02 � < 9.41E+02
f19 8.17E+02 � ≈ 8.78E+02 8.22E+02 � < 9.01E+02 8.48E+02 � < 9.38E+02
f20 7.69E+02 � ≈ 8.63E+02 8.23E+02 � < 8.96E+02 8.48E+02 � < 9.28E+02
f21 8.57E+02 � ≈ 7.94E+02 8.47E+02 � > 5.12E+02 7.23E+02 � > 5.00E+02
f22 7.63E+02 � > 7.53E+02 5.34E+02 � < 8.80E+02 5.00E+02 � < 9.14E+02
f23 8.74E+02 ≈ 8.88E+02 8.40E+02 � > 5.34E+02 7.26E+02 � > 5.39E+02
f24 3.94E+02 � > 2.28E+02 2.14E+02 � > 2.00E+02 2.21E+02 � > 2.00E+02

(<, ≈, >): (1, 16, 6) (<, ≈, >): (8, 10, 5) (<, ≈, >): (8, 6, 9)
< or > : 7/23 (30%) < or > : 13/23 (57%) < or > : 17/23 (74%)
functions � or �: 13/23 (57%) functions � or �: 18/23 (79%) functions � or �: 19/23 (83%)

real-coded steady state genetic algorithm, respectively.
Table 3 shows that PS-CMA-ES, MA-LSch-CMA, but also IPOP-CMA-ES-ncb, are

superior to IPOP-CMA-ES-05 on 30 and 50 dimensions in the sense that they find more
often better average errors than IPOP-CMA-ES-05. However, there is an interesting pat-
tern related to the fact whether IPOP-CMA-ES-ncb has the final solutions outside the
bounds or not. Let us focus on the cases where IPOP-CMA-ES-ncb obtains all solutions
outside the bounds and statistically significantly improves over IPOP-CMA-ES-05 (as
indicated by the “<” symbol in Table 3). In many such cases, PS-CMA-ES does obtain
the same average errors (see, for example, functions f18–f20 and f24 for both, 30 and
50 dimensions and function f22 for 50 dimensions), or very similar values (see, for ex-
ample, functions f21 and f23 for 50 dimensions); such cases are underlined in Table 3.
A similar pattern arises for the published results of the MA-LSch-CMA algorithm. In-
terestingly, MA-LSch-CMA checks bound constraints only for the solutions generated
by the steady-state GA part but not for solutions returned by the CMA-ES local search.
After re-running the publicly available version of MA-LSch-CMA, we found that it re-
turns on several functions infeasible final solutions (as indicated by the symbols � and
� in Table 3). This knowledge together with the similar pattern of the average errors
puts at least serious doubts on the fact whether the average errors reported in (Müller
et al., 2009) correspond all to solutions that are inside the bounds. This analysis shows
that claims of superiority of one algorithm over another may in fact not be valid if the
algorithms confound situations S2 and S3.
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Table 3: The average errors obtained by PS-CMA-ES, MA-LSch-CMA (MA), IPOP-CMA-
ES-ncb (IPOP-ncb) and IPOP-CMA-ES-05 (IPOP-05) over 25 independent runs for each of
the CEC’05 functions except f7 and f25 (these two functions are excluded as for these only
an initialization range is specified). The numbers in parenthesis represent the number of
times an algorithm is better, equal or worse, respectively, compared to IPOP-CMA-ES-05.
The underlined values indicate that the corresponding average error values of PS-CMA-
ES (or MA-LSch-CMA) are the same or very close to the infeasible average error values
obtained by IPOP-CMA-ES-ncb.

fcec
30 dimensions 50 dimensions

PS-CMA-ES MA IPOP-ncb IPOP-05 PS-CMA-ES MA IPOP-ncb IPOP-05
f1 1.00E−08 ——— 1.00E−08 1.00E−08 1.00E−08 ——— 1.00E−08 1.00E−08
f2 1.00E−08 ——— 1.00E−08 1.00E−08 9.79E−04 ——— 1.00E−08 1.00E−08
f3 8.00E+04 ——— 1.00E−08 1.00E−08 3.28E+05 ——— 1.00E−08 1.00E−08
f4 8.47E−04 ——— 2.44E+03 � < 1.11E+04 1.58E+03 ——— 1.32E+05 � < 4.68E+05
f5 3.98E+02 ——— 2.30E+01 � > 1.00E−08 1.18E+03 ——— 7.91E+02 � > 2.85E+00
f6 1.35E+01 1.19E+01 1.00E−08 1.00E−08 2.98E+01 6.58E+01 1.00E−08 1.00E−08
f8 2.10E+01 2.03E+01 2.07E+01 � > 2.01E+01 2.11E+01 2.05E+01 2.11E+01 � > 2.01E+01
f9 1.00E−08 1.00E−08 1.01E+00 9.38E−01 1.00E−08 1.00E−08 1.12E+00 � < 1.39E+00
f10 1.00E−08 1.84E+01 1.37E+00 1.65E+00 1.00E−08 3.75E+01 2.36E+00 1.72E+00
f11 3.91E+00 4.35E+00 6.36E+00 � > 5.48E+00 1.22E+01 1.08E+01 1.49E+01 � > 1.17E+01
f12 7.89E+01 7.69E+02 � 1.38E+03 � < 4.43E+04 2.36E+03 2.76E+03 � 7.38E+03 � < 2.27E+05
f13 2.11E+00 2.34E+00 2.47E+00 2.49E+00 4.00E+00 3.51E+00 4.31E+00 4.59E+00
f14 1.29E+01 1.27E+01 1.28E+01 � < 1.29E+01 2.25E+01 2.23E+01 2.34E+01 � > 2.29E+01
f15 2.10E+02 3.08E+02 � 2.01E+02 � < 2.08E+02 2.64E+02 2.88E+02 � 2.01E+02 � < 2.04E+02
f16 2.61E+01 1.36E+02 � 7.95E+01 � > 3.50E+01 2.27E+01 6.40E+01 � 1.36E+02 � > 3.09E+01
f17 5.17E+01 1.35E+02 � 4.31E+02 � > 2.91E+02 6.16E+01 8.32E+01 � 7.69E+02 � > 2.34E+02
f18 8.16E+02 8.16E+02 � 8.16E+02 � < 9.04E+02 8.36E+02 8.45E+02 � 8.36E+02 � < 9.13E+02
f19 8.16E+02 8.16E+02 � 8.16E+02 � < 9.04E+02 8.36E+02 8.45E+02 � 8.36E+02 � < 9.12E+02
f20 8.16E+02 8.16E+02 � 8.16E+02 � < 9.04E+02 8.36E+02 8.41E+02 � 8.36E+02 � < 9.12E+02
f21 7.11E+02 5.12E+02 � 8.57E+02 � > 5.00E+02 7.18E+02 5.45E+02 � 7.15E+02 � < 1.00E+03
f22 5.00E+02 5.26E+02 � 5.98E+02 � < 8.03E+02 5.00E+02 5.00E+02 � 5.00E+02 � < 8.05E+02
f23 7.99E+02 5.34E+02 � 8.69E+02 � > 5.34E+02 7.24E+02 5.81E+02 � 7.27E+02 � < 1.01E+03
f24 2.10E+02 2.00E+02 � 2.10E+02 � < 9.10E+02 2.14E+02 2.00E+02 � 2.14E+02 � < 9.55E+02

(13, 3, 7) (11, 1, 6) (11, 4, 8) (15, 1, 7)† (13, 0, 5)† (12, 4, 7)
� denotes that all 25 solutions of IPOP-CMA-ES-ncb or MA-LSch-CMA-ncb are outside the bounds.
�

denotes some of the 25 solutions of IPOP-CMA-ES-ncb or MA-LSch-CMA-ncb are outside the bounds.
† denotes there is a significant difference over the distribution of average errors between PS-CMA-ES (MA-

LSch-CMA) and IPOP-CMA-ES-05 according to a two-sided Wilcoxon matched-pairs signed-rank test at the
0,05 α-level.

4 Conclusions

In this note, we first show that IPOP-CMA-ES and MA-LSch-CMA return surprisingly
often infeasible solutions on the CEC’05 benchmark functions if the situations S2 and
S3 are confounded. In many cases, these infeasible solutions are better than the best
feasible solutions found even though it is known that the optimal solutions are within
the bounds. This issue points toward a significant impact on CEC’05 benchmark func-
tions for what concerns algorithm comparisons. In particular, claims about superior
performance of one algorithm over another might be erroneous as infeasible solutions
with respect to bound constraints may have been reported.

It is interesting to examine whether misunderstandings may potentially arise in
other benchmark sets such as those proposed by Tang et al. (2007); Hansen et al. (2009a);
Herrera et al. (2010). For the CEC’08 benchmark set (Tang et al., 2007) formulations
analogous to the description in the CEC’05 benchmark set are used, thus, giving a
chance of misinterpretations analogous to those indicated in the introduction. In the
BBOB benchmark definition, it is stated that all functions are defined and can be eval-
uated at any point but that the “search domain” is [−5, 5]D, where D is the dimension
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of the search space. Since the notion of search domain leaves room for interpretation,
it may remain unclear whether a situation S2 or S3 is intended. We were confirmed
that for BBOB the setting S3 is intended (Hansen, 2013). In the SOCO benchmark set
(Herrera et al., 2010), each function definition restricts the feasible interval. This clearly
excludes situation S3 but leaves some doubts as to whether situation S1 or S2 is in-
tended (the latter is actually the case).

To avoid possible doubts about the feasibility of the solutions, we strongly recom-
mend that in the future every paper that reports results using the IEEE CEC’05 bench-
mark function suite, or any other benchmark suite, should (i) explicitly describe the
bound handling mechanism used (if any), (ii) explicitly check the feasibility of the final
solutions4, and (iii) present the final solutions at least in supplementary pages to the
paper to avoid misinterpretations. Regarding benchmarking, we recommend that the
designers of benchmark sets should clearly state in which of the situations S1, S2, or
S3 the benchmark set is designed to be used. In addition, if code is provided, it should
support proper evaluation by returning null or infinity as values if generated solutions
violate bound constraints in situation S1 or by providing tools for checking solutions
feasibility and computing statistics in case of situation S2.

All the solutions generated by the algorithms discussed in this paper are available
at http://iridia.ulb.ac.be/supp/IridiaSupp2011-013.
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