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Abstract—In this paper, we introduce ACOMV, an ant colony
optimization (ACO) algorithm that extends the ACOR algorithm
for continuous optimization to tackle mixed-variable optimization
problems. In ACOMV, the decision variables of an optimization
problem can be explicitly declared as continuous, ordinal, or
categorical, which allows the algorithm to treat them adequately.
ACOMV includes three solution generation mechanisms: a con-
tinuous optimization mechanism (ACOR), a continuous relaxation
mechanism (ACOMV-o) for ordinal variables, and a categorical
optimization mechanism (ACOMV-c) for categorical variables.
Together, these mechanisms allow ACOMV to tackle mixed-
variable optimization problems.

We also define a novel procedure to generate artificial, mixed-
variable benchmark functions and we use it to automatically
tune ACOMV’s parameters. The tuned ACOMV is tested on
various real-world continuous and mixed-variable engineering
optimization problems. Comparisons with results from the liter-
ature demonstrate the effectiveness and robustness of ACOMV

on mixed-variable optimization problems.

Index Terms—Ant colony optimization, mixed-variable opti-
mization problems, artificial mixed-variable benchmark func-
tions, automatic parameter tuning, engineering optimization

I. INTRODUCTION

Many real-world optimization problems can be modeled
using combinations of continuous and discrete variables. Due
to the practical relevance of these mixed-variable problems,
a number of optimization algorithms for tackling them have
been proposed. These algorithms are mainly based on Genetic
Algorithms [1], Differential Evolution [2], Particle Swarm
Optimization [3] and Pattern Search [4]. The discrete variables
in these problems can be ordinal or categorical. Ordinal vari-
ables exhibit a natural ordering relation (e.g., integers) and are
usually handled using a continuous relaxation approach [5],
[6], [7], [8], [9], [10], [11], [12]. Categorical variables take
their values from a finite set of categories [13], which often
identify non-numeric elements of an unordered set (e.g., col-
ors, shapes or types of material). Categorical variables do not
have a natural ordering relation and therefore require the use
of a categorical optimization approach [14], [15], [16], [17],
[18], [19], [13] that does not assume any ordering relation. To
the best of our knowledge, the approaches to mixed-variable
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versité libre de Bruxelles, 1050 Brussels, Belgium. (e-mail: tliao@ulb.ac.be;
stuetzle@ulb.ac.be; mdorigo@ulb.ac.be).

M.A. Montes de Oca is with Department of Mathematical Sci-
ences, University of Delaware, Newark, DE 19716 USA. (e-mail:
mmontes@math.udel.edu).

Copyright (c) 2012 IEEE

problems available in the literature are targeted to either handle
mixtures of continuous and ordinal variables or mixtures of
continuous and categorical variables. In other words, they do
not consider the possibility that the formulation of a problem
may involve at the same time the three types of variables.
Hence, there is a need for algorithms that allow the explicit
declaration of each variable as either continuous, ordinal or
categorical.

In this paper, we extend an ant colony optimization al-
gorithm for continuous optimization (called ACOR) [20] to
tackle mixed-variable optimization problems. Ant colony op-
timization (ACO) was originally introduced to solve discrete
optimization problems [21], [22], [23] and its adaptation to
solve continuous or integer optimization problems enjoys an
increasing attention [20], [24], [25], [26], [27], [28], [29]. Our
ACO algorithm, called ACOMV, allows the user to explicitly
declare each variable of a mixed-variable optimization prob-
lem as continuous, ordinal or categorical. Continuous variables
are handled with a continuous optimization approach (ACOR),
ordinal variables are handled with a continuous relaxation
approach (ACOMV-o), and categorical variables are handled
with a categorical optimization approach (ACOMV-c).

We also introduce a new set of artificial, mixed-variable
benchmark functions and describe the method to construct
them. These benchmark functions provide a flexible envi-
ronment for investigating the performance of mixed-variable
optimization algorithms and the effect of different parameter
settings on their performance. They are also useful as a training
set for deriving high-performance parameter settings through
the usage of automatic configuration methods. Here, we use
Iterated F-Race [30], [31] to automatically tune the parameters
of ACOMV on a set of artificial, mixed-variable benchmark
functions.

As a final step, we compare the performance of ACOMV

with results from the literature on eight mixed-variable engi-
neering optimization problems. Our results show that ACOMV

reaches a very high performance: it improves over the best
known solutions for two of the eight engineering problems,
and in the remaining six it finds the best-known solutions using
fewer objective function evaluations than most algorithms
from the literature.

The paper is organized as follows. Section II introduces
mixed-variable optimization problems and Section III de-
scribes ACOMV. Section IV presents the proposed artificial
mixed-variable benchmark functions and the tuning of the
parameters of ACOMV on these benchmark functions. In
Section V, we compare the results obtained with ACOMV on
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real-world problems to those obtained by other algorithms.
In Section VI we conclude and give directions for future
work. The Appendix contains further experimental results and
a mathematical formulation of the engineering benchmark
problems we tackle.

II. MIXED-VARIABLE OPTIMIZATION PROBLEMS

A model for a mixed-variable optimization problem
(MVOP) may be formally defined as follows:

Definition A model R = (S,Ω, f) of a MVOP consists of
• a search space S defined over a finite set of both

discrete and continuous decision variables and a set Ω
of constraints among the variables;

• an objective function f : S→ R+
0 to be minimized.

The search space S is defined by a set of n = d+ r variables
xi, i = 1, . . . , n, of which d are discrete and r are continuous.
The discrete variables include o ordinal variables and c
categorical ones, d = o + c. A solution S ∈ S is a complete
value assignment, that is, each decision variable is assigned
a value. A feasible solution is a solution that satisfies all
constraints in the set Ω. A global optimum S∗ ∈ S is a
feasible solution that satisfies f(S∗) ≤ f(S) ∀S ∈ S. The set
of all globally optimal solutions is denoted by S∗,S∗ ⊆ S.
Solving an MVOP requires finding at least one S∗ ∈ S∗.

The methods proposed in the literature to tackle MVOPs
may be divided into three groups:
• The first group is based on a two-partition approach,

in which the variables are partitioned into continuous
variables and discrete variables. Variables of one partition
are optimized separately for fixed values of the variables
of the other partition [32], [33]. This approach often leads
to a large number of objective function evaluations [34].
Additionally, since the dependency between variables
belonging to different partitions is not explicitly handled,
algorithms using this approach are prone to finding sub-
optimal solutions.

• The second group takes a continuous relaxation ap-
proach. In this group, all variables are handled as con-
tinuous variables. Ordinal variables are relaxed to con-
tinuous variables, and are repaired when evaluating the
objective function. The repair mechanism is used to return
a discrete value in each iteration. The simplest repair
mechanisms are truncation and rounding [5], [8]. It is also
possible to treat categorical variables using continuous
relaxations [35]. However, in this case the performance
of continuous relaxation may decline when the number of
categories increases, as we also show in Section A of the
Appendix to this paper. In general, the performance of
algorithms based on the continuous relaxation approach
depends on the continuous solvers and on the repair
mechanism.

• The third group uses a categorical optimization approach
to directly handle discrete variables without a continuous
relaxation. Thus, any possible ordering relations that may
exist between discrete variables are ignored and, thus, all
discrete variables, ordinal and categorical, are treated as

categorical ones.1 In this group, continuous variables are
handled by a continuous optimization method. Genetic
adaptive search [14], pattern search [15], and mixed
Bayesian optimization [17] are among the approaches that
have been proposed.

Researchers often take one specific group of approaches
to develop mixed-variable optimization algorithms and to test
them on MVOPs with either categorical or ordinal variables.
In our study, we combine a continuous relaxation and a
categorical optimization approach.

III. ACOMV FOR MIXED-VARIABLE OPTIMIZATION
PROBLEMS

We start by describing the structure of ACOMV. Then, we
describe the probabilistic solution construction for continuous
variables, ordinal variables and categorical variables, respec-
tively.

A. ACOMV structure

ACO algorithms for combinatorial optimization problems
make use of a so-called pheromone model in order to proba-
bilistically construct solutions. A pheromone model consists of
a set of numerical values, called pheromones, that are a func-
tion of the search experience of the algorithm. The pheromone
model is used to bias the solution construction towards regions
of the search space containing high quality solutions. As such,
ACO algorithms follow a model-based search paradigm [36]
as, for example, also estimation of distribution algorithms [37]
do; the similarities and differences between ACO algorithms
and estimation of distribution algorithms have been discussed
by Zlochin et al. [36]. In ACO for combinatorial optimization
problems, the pheromone values are associated with a finite
set of discrete components. This is not possible if continuous
variables are involved. Therefore, ACOMV uses a solution
archive, SA, as a form of pheromone model for the derivation
of a probability distribution over the search space, following
in this way the principle of population-based ACO [38]. The
solution archive contains k complete solutions of the problem.
While a pheromone model in combinatorial optimization can
be seen as an implicit memory of the search history, a solution
archive is an explicit memory.

Given an n-dimensional MVOP and k solutions, ACOMV

stores the value of the n variables and the objective function
value of each solution in the solution archive. Fig. 1 shows the
structure of the solution archive. It is divided into three groups
of columns, one for continuous variables, one for ordinal
variables and one for categorical variables.

The basic flow of the ACOMV algorithm is as follows.
The solution archive is initialized with k randomly generated
solutions. Then, these k solutions are sorted according to
their quality (from best to worst). A weight ωj is associated
with solution Sj . This weight is calculated using a Gaussian
function defined by:

1Note that the special case of MVOPs, where the variables can be either
continuous or categorical, is also called mixed-variable programming problem
[15], [18].
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Fig. 1. The structure of the solution archive used by ACOMV . The solutions
in the archive are sorted according to their quality (i.e., the value of the
objective function f(Sj)); hence, the position of a solution in the archive
always corresponds to its rank.

ωj =
1

qk
√

2π
e
−(rank(j)−1)2

2q2k2 , (1)

where rank(j) is a function that returns the rank of solution
Sj , and q is a parameter of the algorithm. By computing
rank(j) − 1, which corresponds to setting the mean of the
Gaussian function to 1, the best solution receives the highest
weight, while the weight of the other solutions decreases ex-
ponentially with their rank. At each iteration of the algorithm,
m new solutions are probabilistically constructed by m ants,
where an ant is a probabilistic solution construction procedure.
The weight of a solution determines the level of attractiveness
of that solution during the solution construction process. A
higher weight means a higher probability of sampling around
that solution. Once the m solutions have been generated, they
are added into the solution archive. The k+m solutions in the
archive are then sorted and the m worst ones are removed. The
remaining k solutions constitute the new solution archive. In
this way, the search process is biased towards the best solutions
found during the search. During the probabilistic solution
construction process, an ant applies the construction mech-
anisms of ACOR, ACOMV-o and ACOMV-c. ACOR handles
continuous variables, while ACOMV-o and ACOMV-c handle
ordinal variables and categorical variables, respectively. Their
detailed description is given in the following subsection. An
outline of the ACOMV algorithm is given in Algorithm 1. The
functions Best and Sort in Algorithm 1 implement the sorting
of the archive and the selection of the k best solutions.

B. Probabilistic Solution Construction for Continuous Vari-
ables

Continuous variables are handled by ACOR [20]. In ACOR,
the construction of new solutions by the ants is accomplished
in an incremental manner, variable by variable. First, an ant
chooses probabilistically one of the solutions in the archive.
The probability of choosing solution j is given by:

pj =
ωj∑k
l=1 ωl

, (2)

Algorithm 1 Outline of ACOMV

Initialize decision variables
Initialize and evaluate k solutions
{Sort solutions and store them in the archive SA}
SA← Sort(S1 · · ·Sk)
while termination criterion is not satisfied do
{ConstructAntSolution}
for 1 to m do

Probabilistic Solution Construction for ACOR
Probabilistic Solution Construction for ACOMV-o
Probabilistic Solution Construction for ACOMV-c
Store and evaluate newly generated solutions

end for
{Sort solutions and select the best k solutions}
SA← Best(Sort(S1 · · ·Sk+m), k)

end while

where ωj is calculated according to Equation (1).
An ant then constructs a new continuous variable solution

around the chosen solution j. It assigns values to variables
in a fixed variable order, that is, at the i-th construction step,
1 ≤ i ≤ r, an ant assigns a value to continuous variable i. To
assign a value to variable i, the ant samples the neighborhood
around the value Rij of the chosen j-th solution. The sampling
is done using a normal probability density function with mean
µ and standard deviation σ:

g(x, µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 . (3)

When considering continuous variable i of solution j, we
set µ = Rij . Furthermore, we set

σ = ξ

k∑
l=1

|Ril −Rij |
k − 1

, (4)

which is the average distance between the values of the i-th
continuous variable of the solution j and the values of the
i-th continuous variables of the other solutions in the archive,
multiplied by a parameter ξ. This parameter has an effect
similar to that of the pheromone persistence in ACO. The
higher the value of ξ, the lower the convergence speed of the
algorithm. This process is repeated for each dimension by each
of the m ants.

Thanks to the pheromone representation used in ACOR
(that is, the solution archive), it is possible to take into
account the correlation between the decision variables. A non-
deterministic adaptive method for doing so is presented in [20].
It is effective on the rotated benchmark functions proposed in
Table I and it is also used to handle the variable dependencies
of MVOP engineering problems in Section V.

C. Probabilistic Solution Construction for Ordinal Variables

If the considered optimization problem includes ordinal
variables, the continuous relaxation approach, ACOMV-o, is
used. ACOMV-o does not operate on the actual values of the
ordinal variables but on their indices in an array. The values of
the indices for the new solutions are generated as real numbers,
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as it is the case for the continuous variables. However, before
the objective function is evaluated, the continuous values are
rounded to the nearest valid index, and the value at that index
is then used for the objective function evaluation. The reason
for this choice is that ordinal variables do not necessarily have
numerical values; for example, an ordered variable may take as
possible values {small,medium, large}. ACOMV-o otherwise
works exactly as ACOR.

D. Probabilistic Solution Construction for Categorical Vari-
ables

While ordinal variables are relaxed and treated by the
original ACOR, categorical variables are treated differently by
ACOMV-c as this type of variables has no predefined ordering.
At each step of ACOMV-c, an ant assigns a value to one
variable at a time. For each categorical variable i, 1 ≤ i ≤ c,
an ant chooses probabilistically one of the ti available values
vil ∈ {vi1, . . . , viti}. The probability of choosing the l-th value
is given by

pil =
wl∑ti
j=1 wj

, (5)

where wl is the weight associated to the l-th available value.
The weight wl is calculated as

wl =



ωjl
uil

+
q

η
, if (η > 0, uil > 0),

ωjl
uil
, if (η = 0, uil > 0),

q

η
, if (η > 0, uil = 0),

(6)

where ωjl is calculated according to Equation (1) with jl being
the index of the highest quality solution that uses value vil for
the categorical variable i. uil is the number of solutions that
use value vil for the categorical variable i in the archive (hence,
the more common the value vil is, the lower is its final weight);
thus, uil is a variable whose value is adapted at run-time and
that controls the weight of choosing the l-th available value.
uil = 0 corresponds to the case in which the l-th available
value is not used by the solutions in the archive; in this case
the weight of the l-th value is equal to

q

η
. η is the number

of values from the ti available ones that are not used by the
solutions in the archive; η = 0 (that is, all values are used)
corresponds to the case in which

q

η
is discarded. Again, η is a

variable that is adapted at run-time and, if η = 0, it is natural
to discard the second component in Equation (6). Note that
uil and η are nonnegative numbers, and their values are never
equal to zero at the same time. q is the same parameter of the
algorithm that was used in Equation (1).

The weight wl is therefore a sum of two components.
The first component biases the choice towards values that are
chosen in the best solutions but do not occur very frequently
among all solutions in the archive. The second component
plays the role of exploring values of the categorical decision
variable i that are currently not used by any solution in the
archive; in fact, the weight of such values according to the
first component would be zero and, thus, this mechanism helps

to avoid premature convergence (in other words, to increase
diversification).

In Appendix D, we experimentally explore different options
for the shape of Equation (6); the details of the experimental
setup used in Appendix D is explained in Section IV, which
should therefore be consulted before reading the appendix.

E. Restart strategy

ACOMV uses a simple restart strategy for fighting stagna-
tion. This strategy consists in restarting the algorithm without
forgetting the best-so-far solution in the archive. A restart is
triggered if the number of consecutive iterations with a relative
solution improvement lower than a certain threshold ε is larger
than MaxStagIter. Since this is a component that can be used
with any algorithm and not only with ACOMV, we compare
the performance of ACOMV with and without this restart
mechanism to that of other algorithm.

IV. ARTIFICIAL MIXED-VARIABLE BENCHMARK
FUNCTIONS AND PARAMETER TUNING OF ACOMV

A. Artificial mixed-variable benchmark functions

The real world mixed-variable benchmark problems found
in the literature often originate from the mechanical engi-
neering field. Unfortunately, these problems cannot be easily
parametrized and flexibly manipulated for investigating the
performance of mixed-variable optimization algorithms in a
systematic way. In this section, we propose a set of new,
artificial mixed-variable benchmark functions that allow the
definition of a controlled environment for the investigation
of algorithm performance and automatic tuning of algorithm
parameters [31], [39]. Our proposed artificial mixed-variable
benchmark functions are defined in Table I. These func-
tions originate from some typical continuous functions of the
CEC’05 benchmark set [40]. The decision variables consist
of continuous and discrete variables; n is the total number
of variables and M is a random, normalized, n × n rotation
matrix. The problems’ global optima ~S∗ are shifted in order
not to give an advantage to population-based methods that
may have a bias towards the origin of the search space [41].
The proposed benchmarks allow three settings for discrete
variables. The first setting consists of only ordinal variables;
the second setting consists of only categorical variables; the
third setting consists of both ordinal and categorical variables.
MinRange and MaxRange denote the lower and upper bound
of variable domains, respectively.

We use the two-dimensional, not shifted, randomly rotated
Ellipsoid mixed-variable function as an example of how to
construct artificial mixed-variable benchmark functions. We
start with a two-dimensional, continuous, not shifted, ran-
domly rotated Ellipsoid function:

fEL(~x) =

2∑
i=1

(β
i−1
2−1 zi)

2,

 x1, x2 ∈ [−3, 7],
~z = M~x,
β = 5.

(7)

In order to transform this continuous function into a mixed-
variable one, we discretize the continuous domain of variable
x1 ∈ [−3, 7] into a set of discrete values, T = {θ1, θ2, ..., θt} :
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TABLE I
ARTIFICIAL MIXED-VARIABLE BENCHMARK FUNCTIONS. IN THE UPPER PART THE OBJECTIVE FUNCTIONS ARE DEFINED; THE VARIABLES ARE DEFINED

IN THE LOWER PART OF THE TABLE.

Objective functions

fEllipsoidMV (~x) =
∑n
i=1(β

i−1
n−1 zi)

2,

fAckleyMV (~x) = −20e−0.2
√

1
n

∑n
i=1(z

2
i ) − e

1
n

∑n
i=1(cos(2πzi)) + 20 + e,

fRastriginMV (~x) = 10n+
∑n
i=1(z

2
i − 10 cos(2πz2i )),

fRosenbrockMV (~x) =
∑n−1
i=1 [100(zi+1 − z2i )2 + (zi − 1)2],

fSphereMV (~x) =
∑n
i=1 z

2
i ,

fGriewankMV (~x) = 1
4 000

∑n
i=1 z

2
i −

∏n
i=1 cos(

zi√
i
) + 1,

Definition of mixed variables

1st setting:



~z = M(~x− ~S∗) : ~S∗ = (R1
∗R

2
∗ . . . R

r
∗O

1
∗ O

2
∗ . . . O

o
∗)
t,

if (fRosenbrockMV ), ~z = ~z + 1,

~S∗ is a shift vector, n = o+ r,

~x = (R1R2 . . . Rr O1O2 . . . Oo)t,

Ri ∈ (MinRangei,MaxRangei), i = 1, . . . , r

Oi ∈ T,T = {θ1, θ2, ..., θti} : ∀l θtl ∈ (MinRangei,MaxRangei) i = 1, . . . , o

2nd setting:



~z = M(~x− ~S∗) : ~S∗ = (R1
∗R

2
∗ . . . R

r
∗ C

1
∗ C

2
∗ . . . C

c
∗, )

t,

if (fRosenbrockMV ), ~z = ~z + 1,

~S∗ is a shift vector, n = c+ r,

~x = (R1R2 . . . Rr C1 C2 . . . Cc)t,

Ri ∈ (MinRangei,MaxRangei), i = 1, . . . , r

Ci ∈ T,T = {θ1, θ2, ..., θti} : ∀l θtl ∈ (MinRangei,MaxRangei) i = 1, . . . , c

3rd setting:



~z = M(~x− ~S∗) : ~S∗ = (R1
∗R

2
∗ . . . R

r
∗O

1
∗ O

2
∗ . . . O

o
∗ C

1
∗ C

2
∗ . . . C

c
∗)
t,

if (fRosenbrockMV ), ~z = ~z + 1,

~S∗ is a shift vector, n = o+ c+ r,

~x = (R1R2 . . . Rr O1O2 . . . Oo C1 C2 . . . Cc)t,

Ri ∈ (MinRangei,MaxRangei), i = 1, . . . , r

Oi ∈ T,T = {θ1, θ2, ..., θti} : ∀l θtl ∈ (MinRangei,MaxRangei) i = 1, . . . , o

Ci ∈ T,T = {θ1, θ2, ..., θti} : ∀l θtl ∈ (MinRangei,MaxRangei) i = 1, . . . , c

θi ∈ [−3, 7]. This results in the following mixed-variable test
function:

fELMV (x1, x2) = z2
1 + β · z2

2 ,


x1 ∈ T,
x2 ∈ [−3, 7],
~z = M~x,
β = 5.

(8)

The set T is created by choosing t uniformly spaced values
from the original domain [−3, 7] so that ∃i=1,...,t θi = 0.
In this way, it is always possible to find the optimum value
fELMV (0, 0)t = 0, regardless of the chosen t discrete values.

Problems that involve ordinal variables are easy to simulate
with the aforementioned procedure because the discrete points
in the discretization for variable x1 are naturally ordered. The
left plot in Fig. 2 shows how the algorithm “sees” such a
naturally ordered rotated ellipsoid function, with variable x1

being the discrete variable. The test function is presented as a
set of points representing different solutions. To simulate prob-
lems involving categorical variables only, the discrete points
are ordered randomly. In this setting, a different ordering is
generated for each run of the algorithm. This setting allows us

to investigate how the algorithm performs when the ordering
of the discrete points is not well defined or unknown. The
right plot of Fig. 2 shows how the algorithm “sees” such a
modified problem for a given single random ordering.

The artificial mixed-variable benchmark functions have
characteristics such as non-separability, ill-conditioning and
multi-modality. Non-separable functions often exhibit complex
dependencies between decision variables. Ill-conditioned func-
tions often lead to premature convergence. Multi-modal func-
tions have multiple local optima and require an efficient global
search. Therefore, these characteristics are expected to be a
challenge for different mixed-variable optimization algorithms.
The flexibility in defining functions with different numbers
of discrete points and the possible mixing of ordered and
categorical variables enables systematic experimental studies
addressing the impact of function features on algorithm per-
formance. In fact, using these benchmark functions we verified
that ACOMV-o is more effective than ACOMV-c on problems
that have ordinal variables while the opposite is true on
problems with categorical variables. A detailed experimental
analysis that corroborates this statement is given in Section A
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Fig. 2. Randomly rotated ellipsoid function (β = 5) with discrete variable
x1 ∈ T. The left plot presents the case in which the natural ordering of the
intervals is used, while the right one presents the case in which a random
ordering is used. The darker the point, the higher the quality of the solution.

of the Appendix. This result also validates our design choice
for combining these two approaches in ACOMV.

B. Parameter tuning of ACOMV

Besides serving for experimenal studies, the new benchmark
functions can be used to generate a training set of problems for
the automatic parameter tuning of mixed-variable optimization
algorithms. The tuning of an algorithm on a training set that
is different from the test set is important to allow for an
unbiased assessment of the algorithm’s performance on (by the
algorithm unseen) test problems [42]. We therefore generate
a training set of benchmark functions across all six mixed-
variable benchmark functions, across various dimensions [43]
(taken from the set n ∈{2, 4, 6, 8, 10, 12, 14}), and across
various ratios of ordinal and categorical variables. As tuning
method we use Iterated F-Race [30], [31]. In Iterated F-
Race, the training benchmark functions are sampled in a
random order. The performance measure for tuning is the
objective function value of each instance after 10 000 function
evaluations. The maximum tuning budget for Iterated F-Race
is set to 5 000 runs of ACOMV. We use the default settings
of Iterated F-Race [31].

The obtained parameter settings after tuning are given in
Table II. We first use these parameter settings (i) to analyze
the effectiveness of ACOMV’s restart mechanism and (ii)
to obtain numerical results of ACOMV on artificial mixed-
variable benchmark problems, which can serve as a benchmark
for future developments of algorithms for mixed-variable
optimization problems. The corresponding results are given
in Sections B and C of the Appendix, respectively. Finally, as
mentioned before, we also analyzed the influence alternative
choices for Equation (6) would have on the performance of
ACOMV. In particular, we study three alternative choices and
we report the results in Section D of the Appendix. These
experimental results confirm the advantage of our original
choice of Equation (6).

Next, we use these parameter settings for a final validation
of ACOMV’s performance, namely for solving real world
engineering optimization problems; these results are reported
in the next section.

TABLE II
PARAMETER SETTINGS FOR ACOMV TUNED BY ITERATED F-RACE.

Parameter Symbol Value
Number of ants m 5

Influence of best quality solutions q 0.05099
Width of the search ξ 0.6795

Archive size k 90
Stagnating iterations before restart MaxStagIter 650

Relative improvement threshold ε 10−5

V. APPLICATION TO ENGINEERING OPTIMIZATION
PROBLEMS

Here, we conduct experiments on mixed-variable engineer-
ing benchmark problems and compare the results of ACOMV

with those found in the literature. Since the algorithms pre-
sented in the literature do not use restarts, we additionally
present computational results of a variant ACOnoRMV, where
we switched off the restart in ACOMV. This was done to
examine whether possible advantages of ACOMV over other
algorithms may be due to this particular algorithm feature. For
reducing the variability of the results, we used the method of
common random numbers as a variance reduction technique,
so that if a problem is actually solved without restart, the
reported results for ACOnoRMV and ACOMV are identical. In
fact, our experimental results show that only on three of the
eight problems tested the algorithm restarts actually contribute
to improved performance; we will highlight these cases in the
text.

Note that our experiments comprise a larger set of bench-
mark problems than in the papers found in the literature,
since these latter are often limited to a specific type of
discrete variables (either ordinal or categorical). First, we
classify the available engineering optimization problems in
the literature into four groups according to the types of the
decision variables used (see Table III).

TABLE III
THE CLASSIFICATION OF ENGINEERING OPTIMIZATION

PROBLEMS.
Groups The type of decision variables
Group I Continuous variables†
Group II Continuous and ordinal variables
Group III Continuous and categorical variables
Group IV Continuous, ordinal and categorical variables
† Problems with only continuous variables are considered as

a particular class of mixed variables with an empty set of
discrete variables, since ACOMV is also capable to solve
pure continuous optimization problems.

Group I includes the welded beam design problem case
A [44]; Group II the pressure vessel design problem [45] and
the coil spring design problem [45]; Group III the thermal
insulation systems design problem [16]; and Group IV the
welded beam design problem case B [46]. The mathematical
formulations of the problems are given in Section E of the
Appendix. In this section, we compare the results obtained by
ACOMV to those reported in the literature for these problems.
We also show the run-time behavior of ACOMV by using
run-length distributions (RLDs, for short) [47]. An (empirical)
RLD provides a graphical view of the development of the
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empirical frequency of finding a solution of a certain quality
as a function of the number of objective function evaluations. It
is important to note that NM-PSO [48] and PSOLVER [49] re-
port infeasible solutions that violate the problems’ constraints;
C̆repins̆ek et al. [50] pointed out that the authors of TLBO
[51] used an incorrect formula for computing the number of
objective function evaluations. Therefore, we did not include
these three algorithms in our comparison. For our experiments,
the tuned parameter configuration from Table II was used.
For simplifying the algorithm and giving prominence to the
role of the ACOMV heuristic itself, the most fundamental
constraint handling technique was used, which consists in
rejecting all infeasible solutions in the optimization process
(also called “death penalty”). 100 independent runs were
performed for each engineering problem. In the comparisons,
fBest, fMean and fWorst are the abbreviations used to indicate
the best, average and worst objective function values obtained,
respectively. SRB denotes the success rate of reaching the
best known solution value. Sd gives the standard deviation
of the mean objective function value; a value of Sd lower
than 1.00E−10 is reported as 0. FEs gives the maximum
number of objective function evaluations in each algorithm
run. Note that the value of FEs may vary from algorithm
to algorithm. To define the value of FEs for ACOMV, we
first checked which is the smallest value of FEs across all
competing algorithms; let this value be denoted by FEsmin.
Then the value of FEs for ACOMV is set to FEsmin. Often,
however, ACOMV reached the best known solution values for
the particular problem under concern in all runs (that is, with
a 100% success rate) much faster than its competitors. In such
cases, for ACOMV we give, instead of the value FEsmin,
in parenthesis the maximum number of objective function
evaluations we observed across the 100 independent runs.
The best solutions obtained by ACOMV for each engineering
problem are available in the supplementary information page
http://iridia.ulb.ac.be/supp/IridiaSupp2011-022; there we also
report details on the run time of ACOMV on the engineering
problems, which generally lies in the range of few seconds
and, thus, shows that ACOMV is a feasible alternative to other
algorithms in practice.

A. Group I : Welded beam design problem case A

Recently, many methods have been applied to the welded
beam design problem case A. Table IV shows basic summary
statistics of the results obtained by nine other algorithms and
ACOMV. Most other algorithms do not reach a success rate
of 100% within a maximum number of objective function
evaluations ranging from 30 000 (for (µ + λ)ES [52]) to
200 000 (for CPSO [53]), while ACOMV finds the best-known
solution value in every run using at most 2 303 objective
function evaluations (measured across 100 independent trials).
The only other algorithm that reaches the best-known solution
value in every run is DELC [54]; it does so using in every run
at most 20 000 objective function evaluations (measured across
30 independent trials). Hence, ACOMV is a very efficient and
robust algorithm for this problem. The run-time behavior of
ACOMV on this problems is illustrated also in Fig. 3, where

TABLE IV
BASIC SUMMARY STATISTICS FOR THE WELDED BEAM DESIGN PROBLEM

CASE A. THE BEST-KNOWN SOLUTION VALUE IS 1.724852. fBest , fMean

AND fWorst DENOTE THE BEST, MEAN AND WORST OBJECTIVE FUNCTION
VALUES, RESPECTIVELY. SD DENOTES THE STANDARD DEVIATION OF THE

MEAN OBJECTIVE FUNCTION VALUE. FES DENOTES THE MAXIMUM
NUMBER OF OBJECTIVE FUNCTION EVALUATIONS IN EACH ALGORITHM

RUN. FOR ACOMV WE REPORT IN PARENTHESIS THE LARGEST NUMBER
OF OBJECTIVE FUNCTION EVALUATIONS IT REQUIRED IN ANY OF THE 100

INDEPENDENT RUNS (ACOMV REACHED IN EACH RUN OF AT MOST
20 000 EVALUATIONS THE BEST KNOWN SOLUTION VALUE). “-” MEANS

THAT THE INFORMATION IS NOT AVAILABLE.

Methods fBest fMean fWorst Sd FEs
GA1 [44] 1.748309 1.771973 1.785835 1.12E−02 -
GA2 [55] 1.728226 1.792654 1.993408 7.47E−02 80 000
EP [56] 1.724852 1.971809 3.179709 4.43E−01 -

(µ+ λ)ES [52] 1.724852 1.777692 - 8.80E−02 30 000
CPSO [53] 1.728024 1.748831 1.782143 1.29E−02 200 000
HPSO [57] 1.724852 1.749040 1.814295 4.01E−02 81 000

CLPSO [11] 1.724852 1.728180 - 5.32E−03 60 000
DELC [54] 1.724852 1.724852 1.724852 0 20 000
ABC [58] 1.724852 1.741913 - 3.10E−02 30 000
ACOnoRMV 1.724852 1.724852 1.724852 0 (2 303)
ACOMV 1.724852 1.724852 1.724852 0 (2 303)

Fig. 3. The RLDs of ACOMV for the welded beam design problem case A
and the pressure vessel design problem case A, B and C (wbdA, pvdA, pvdB
and pvdC are the abbreviations of those problems, respectively).

the RLD for this problem is given. The average and minimum
number of objective function evaluations for ACOMV are
2 122 and 1 888, respectively.

B. Group II: Pressure vessel design problem case A, B, C and
D

There are four distinct cases (A, B, C and D) of the pressure
vessel design problem defined in the literature. These cases
differ by the constraints posed on the thickness of the steel
used for the heads and the main cylinder. In case A, B and C
(see Table V), ACOMV reaches the best-known solution value
with a 100% success rate in a maximum of 1 737, 1 764 and
1 666 objective function evaluations, respectively, while other
algorithms do not reach a success rate of 100% with respect to
the best-known solution value even after many more objective
function evaluations. The run-time behavior of ACOMV is
illustrated in Fig. 3, where the RLDs for these problems are
given.

Case D is more difficult to solve due to the larger range of
side constraints for decision variables. Therefore, Case D was
analyzed in more detail in recent literature. We limit ACOMV

to use a maximum number of 30 000 objective function
evaluations, the same as done for several other approaches
from the literature. Table VI shows clearly the second best per-
forming algorithm for what concerns the average and the worst
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TABLE V
RESULTS FOR CASE A, B AND C OF THE PRESSURE VESSEL DESIGN

PROBLEM. fBest DENOTES THE BEST OBJECTIVE FUNCTION VALUE. SRB
DENOTES THE SUCCESS RATE OF REACHING THE BEST KNOWN SOLUTION
VALUE. FES DENOTES THE MAXIMUM NUMBER OF OBJECTIVE FUNCTION
EVALUATIONS IN EACH ALGORITHM RUN. FOR ACOMV WE REPORT IN

PARENTHESIS THE LARGEST NUMBER OF OBJECTIVE FUNCTION
EVALUATIONS IT REQUIRED IN ANY OF THE 100 INDEPENDENT RUNS

(ACOMV REACHED IN EACH RUN THE BEST KNOWN SOLUTION VALUE).
GIVEN IS ALSO THE AVERAGE NUMBER OF OBJECTIVE FUNCTION
EVALUATIONS OF THE SUCCESSFUL RUNS. “-” MEANS THAT THE

INFORMATION IS NOT AVAILABLE.

Case A NLIDP MIDCP DE
ACOnoRMV ACOMV[45] [59] [60]

fBest 7 867.0 7 790.588 7 019.031 7 019.031 7 019.031
SRB - - 89.2% 100% 100%
FEs - - 10 000 (1 737)

(1 500.0)
(1 737)

(1 500.0)
Case B NLIDP SLA GA DE HSIA

ACOnoRMV ACOMV[45] [61] [62] [60] [8]
fBest 7 982.5 7 197.734 7 207.497 7 197.729 7 197.9 7 197.729 7 197.729
SRB - - - 90.2% - 100% 100%
FEs - - - 10 000 - (1 764)

(1 470.48)
(1 764)

(1 470.48)
Case C NLMDP EP ES DE CHOPA

ACOnoRMV ACOMV[63] [64] [65] [60] [66]
fBest 7 127.3 7 108.616 7 006.9 7 006.358 7 006.51 7 006.358 7 006.358
SRB - - - 98.3% - 100% 100%
FEs - - 4 800 10 000 10 000 (1 666)

(1 433.42)
(1 666)

(1 433.42)

TABLE VI
BASIC SUMMARY STATISTICS FOR THE PRESSURE VESSEL DESIGN

PROBLEM CASE D. THE BEST-KNOWN OBJECTIVE FUNCTION VALUE IS
6059.7143. fBest , fMean AND fWorst DENOTES THE BEST, MEAN AND
WORST OBJECTIVE FUNCTION VALUES, RESPECTIVELY. SD DENOTES THE
STANDARD DEVIATION OF THE MEAN OBJECTIVE FUNCTION VALUE. FES

DENOTES THE MAXIMUM NUMBER OF OBJECTIVE FUNCTION
EVALUATIONS IN EACH ALGORITHM RUN.“-” MEANS THAT THE

INFORMATION IS NOT AVAILABLE.

Methods fBest fMean fWorst Sd FEs
GA1 [44] 6 288.7445 6 293.8432 6 308.1497 7.413E+00 -
GA2 [55] 6 059.9463 6 177.2533 6 469.3220 1.309E+02 80 000

(µ+ λ)ES [52] 6 059.7143 6 379.9380 - 2.10E+02 30 000
CPSO [53] 6 061.0777 6 147.1332 6 363.8041 8.645E+01 200 000
HPSO [57] 6 059.7143 6 099.9323 6 288.6770 8.620E+01 81 000

RSPSO [67] 6 059.7143 6 066.2032 6 100.3196 1.33E+01 30 000
CLPSO [11] 6 059.7143 6 066.0311 - 1.23E+01 60 000
DELC [54] 6 059.7143 6 059.7143 6 059.7143 0 30 000
ABC [58] 6 059.7143 6 245.3081 - 2.05E+02 30 000
ACOnoRMV 6 059.7143 6 065.7923 6 089.9893 1.22E+01 30 000
ACOMV 6 059.7143 6 059.7164 6 059.9143 1.94E−02 30 000

objective function values. In fact, ACOMV reaches a 100%
success rate (measured over 100 independent runs) at 30 717
objective function evaluations, while at 30 000 evaluations it
reached a success rate of 98%, which is slightly lower than the
success rate of 100% reported by DELC [54]. In fact, on this
problem, ACOMV actually profits from the possible restarts
of the algorithm, as the slightly worse results of ACOnoRMV

show. The run-time behavior of ACOMV is illustrated in Fig.
4, where the RLD for this problem is given. The average and
minimum number of objective function evaluations is 9 448
and 1 726, respectively.

It is noteworthy that DELC [54] reaches the aforementioned
performance using parameter settings that are specific for each
test problem, while we use a same parameter setting for all
test problems. Using instance specific parameter settings po-
tentially biases the results in favor of the DELC algorithm. In a
practical setting, one would not know a priori which parameter

Fig. 4. The RLDs of ACOMV for the pressure vessel design problem case
D and the coil spring design problem (pvdD and csd are the abbreviations of
those problems, respectively).

setting to apply before actually solving the problem. Thus,
there are methodological problems in the results presented for
DELC [54].

C. Group II: Coil spring design problem

Most of the research reported in the literature considering
the coil spring design problem focused on reaching the best-
known solution or improving the best-known one. Only recent
work [60], [68] gave some attention to the number of objec-
tive functions evaluations necessary to reach the best-known
solution. A comparison of the obtained results is presented
in Table VII. Only a differential evolution algorithm [60] and
ACOMV obtained the best-known objective function value,
2.65856. At 8 000 evaluations ACOMV reached a success rate
of 74%, which is lower than the success rate of 95% reported
by the DE algorithm of [60]; However, ACOMV reaches a
100% success rate with 19 588 objective function evaluations
because it can profit from the possibility of algorithm restarts,
which generally occur after the stopping criterion of 8 000
algorithm evaluations. The run-time behavior of ACOMV is
illustrated in Fig. 4, where the RLD for this problem is
given. The average and minimum number of objective function
evaluations of ACOMV are 9 948 and 1 726, respectively.
It is important to note that the DE algorithm of [60] was
not designed to handle categorical variables. Another DE
algorithm proposed in [68] did not report a success rate, but the
corresponding objective function values were reported to be in
the range of [2.658565, 2.658790] and the number of objective
function evaluations varies in the range [539 960, 3 711 560],
thus, showing a clearly worse performance than ACOMV.

D. Group III: Thermal insulation systems design problem

The thermal insulation systems design problem is one of
the engineering problems used in the literature that deals
with categorical variables. In previous studies, the categorical
variables describing the type of insulators used in different
layers were not considered as optimization variables, but rather
as parameters. Only the more recent work of Kokkolaras et
al. [16] and Abramson et al. [19], which are able to handle
such categorical variables properly, consider these variables for
optimization. Research focuses on improving the best-known
solution value for this difficult engineering problem. ACOMV

reaches a better solution than MVP [16] and FMGPS [19];
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TABLE VII
RESULTS FOR THE COIL SPRING DESIGN PROBLEM. fBest DENOTES THE
BEST OBJECTIVE FUNCTION VALUE. SRB DENOTES THE SUCCESS RATE
OF REACHING THE BEST KNOWN SOLUTION VALUE. FES DENOTES THE
MAXIMUM NUMBER OF OBJECTIVE FUNCTION EVALUATIONS IN EACH

ALGORITHM RUN. FOR ACOMV WE REPORT IN PARENTHESIS THE
LARGEST NUMBER OF OBJECTIVE FUNCTION EVALUATIONS IT REQUIRED

IN ANY OF THE 100 INDEPENDENT RUNS (ACOMV REACHED IN EACH
RUN THE BEST KNOWN SOLUTION VALUE). “-” MEANS THAT THE

INFORMATION IS NOT AVAILABLE.

Algs NLIDP GA GA DE HSIA DE
ACOnoRMV ACOMV[45] [69] [62] [60] [8] [68]

N 10 9 9 9 9 9 9 9
D [inch] 1.180701 1.2287 1.227411 1.223041 1.223 1.223044 1.223041 1.223041
d [inch] 0.283 0.283 0.283 0.283 0.283 0.283 0.283 0.283
fBest 2.7995 2.6709 2.6681 2.65856 2.659 2.658565 2.65856 2.65856
SRB - - - 95.0% - - 74% 74% (100%)
FEs - - - 8 000 - - 8 000 8 000 (19 588)

TABLE VIII
COMPARISON OF THE BEST FITNESS VALUE FOR THE THERMAL

INSULATION SYSTEMS DESIGN PROBLEM.

Objective function MVP [16] FMGPS [19] ACOnoRMV ACOMV

Power(PLA ( Wcm )) 25.294 25.58 24.148 24.148

Table VIII presents a new best-known objective function value,
24.148, obtained by ACOMV. The corresponding solution,
which has 22 continuous variable values and 11 categorical
variable values, is given in the supplementary information
page mentioned above. The evolution of the best solution
as a function of number of objective function evaluations of
ACOMV is shown in Fig.5. In fact, as the number of objective
function evaluations increases, the solution quality continues
to improve. At 50 000 objective function evaluations, ACOMV

reaches the new best-known solution value 24.148.

E. Group IV: Welded beam design problem case B

The welded beam design problem case B is taken from Deb
and Goyal [46] and Dimopoulos [10]. It is a variation of case
A and it includes ordinal and categorical variables. Table IX
shows that ACOMV reaches a new best-known solution value
with a 100% success rate. Additionally, the average number
of objective function evaluations required by ACOMV is also
fewer than that of PSOA [10]. If restarts are not used, as done
in version ACOnoRMV, then slightly worse average results are
obtained, which, however, are still much better than those of
the other algorithms. The run-time behavior of ACOMV is
illustrated in Fig. 6.

Fig. 5. The development of the best solution quality over the number of
function evaluations for ACOMV on the thermal insulation systems design
problem.

TABLE IX
BASIC SUMMARY STATISTICS FOR WELDED BEAM DESIGN PROBLEM CASE

B. fBest AND fMean DENOTES THE BEST AND MEAN OBJECTIVE
FUNCTION VALUES, RESPECTIVELY. SD DENOTES THE STANDARD

DEVIATION OF THE MEAN OBJECTIVE FUNCTION VALUE.
MEAN-FES-SUCCESS DENOTES THE AVERAGE NUMBER OF EVALUATIONS
OF THE SUCCESSFUL RUNS. “-” MEANS THAT THE INFORMATION IS NOT

AVAILABLE.

Methods fBest fMean Sd Mean-FEs-Success
GeneAS [46] 1.9422 - - -
RSPSO [67] 1.9421 - - -
PSOA[10] 1.7631 1.7631 0 6 570

CLPSO [11] 1.5809 1.7405 2.11E−01 -
ACOnoRMV 1.5029 1.52 4.69E−02 985
ACOMV 1.5029 1.5029 0 1 436

Fig. 6. The RLDs of ACOMV for the welded beam design problem case
B (wbdB is its abbreviation).

VI. CONCLUSIONS

In this paper, we have introduced ACOMV, an ant colony
optimization algorithm for tackling mixed-variable optimiza-
tion problems. ACOMV integrates a continuous optimization
solver (ACOR), a continuous relaxation approach (ACOMV-o)
and a categorical optimization approach (ACOMV-c) to solve
continuous and mixed-variable optimization problems.

We also proposed artificial mixed-variable benchmark func-
tions. These provide a sufficiently controlled environment
for the investigation of the performance of mixed-variable
optimization algorithms, and a training environment for auto-
matic parameter tuning. Based on the benchmark functions, a
rigorous comparison between ACOMV-o and ACOMV-c was
conducted, which confirmed our expectation that ACOMV-o is
better than ACOMV-c for ordinal variables while ACOMV-c
is better than ACOMV-o for categorical variables.

The experimental results for real-world engineering prob-
lems illustrate that ACOMV not only can tackle various classes
of decision variables robustly, but also that it is efficient in
finding high-quality solutions. In the welded beam design case
A, ACOMV is the one of the two available algorithms that
reach the best-known solution with a 100% success rate; in
the pressure vessel design problem case A, B and C, ACOMV

is the only available algorithm that reaches the best-known
solution with a 100% success rate. In these four problems,
ACOMV does so using fewer objective function evaluations
than those used by the competing algorithms. In the pressure
vessel design problem case D, ACOMV is one of the two
available algorithms that reach the best-known solution with
a 100% success rate, and it does so using only slightly more
objective function evaluations than the other algorithm, which
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uses problem specific parameter tuning to boost algorithm
performance. In the coil spring design problem, ACOMV

is the only available algorithm that reaches the best-known
solution with a 100% success rate. In the thermal insulation
systems design problem, ACOMV obtains a new best solution,
and in the welded beam design problem case B, ACOMV

obtains a new best solution with a 100% success rate in fewer
evaluations than those used by the other algorithms.

The ACOMV solution archive provides a flexible framework
for resizing the population size and hybridization with a local
search procedure to improve solutions in the archive. Thus, it
would be interesting to use mechanisms such as an incremental
population size and local search to further boost performance
[70], [27]. We also intend to integrate or develop an effective
constraint-handling technique for ACOMV in order to tackle
constrained mixed-variable optimization problems [71], [72].
A promising application for ACOMV are algorithm configura-
tion problems [31], in which typically not only the setting of
numerical parameters but also that of categorical parameters
needs to be determined. To do so, we will integrate ACOMV

into the irace framework [73].
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APPENDIX

A. Analysis of ACOMV-o and ACOMV-c

In this section, we verify the relevance of the design choice
we have taken in ACOMV, namely combining a continuous
relaxation approach, ACOMV-o, and a native categorical op-
timization approach, ACOMV-c, in one single algorithm. We
analyze the performance of ACOMV-o and ACOMV-c on
two sets of the mixed-variable benchmark functions that were
proposed in Section IV. The first set of benchmark functions
involves continuous and ordinal variables. The second set
of benchmark functions involves continuous and categorical
variables.

1) Experimental Setup: For the two settings described
in Section IV, we evaluate the performance of ACOMV-
o and ACOMV-c on six benchmark functions with dif-
ferent numbers t of discrete points in the discretization,
t ∈ {2, 5, 10, 20, 30, ..., 90, 100, 200, 300, ..., 900, 1 000}, and
dimensions 2, 6 and 10; this results in 18 groups of exper-
iments (six benchmark functions and three dimensions) for
the first and the second set of benchmark functions. In this
study, half of the dimensions are continuous variables and the
other half are discrete variables. The continuous variables in
these benchmark functions are handled by ACOR, while the

discrete variables are handled by ACOMV-o and ACOMV-c,
respectively.

To ensure a fair comparison in every group of ex-
periments, we tuned the parameters of ACOMV-o and
ACOMV-c using Iterated F-Race [30], [31] with the same
tuning budget on a training set of benchmark functions.
The training set involves ordinal and categorical vari-
ables with a random number of t discrete points, t ∈
{2, 5, 10, 20, 30, ..., 90, 100, 200, 300, ..., 900, 1 000}. In a test
phase, we conducted experiments with benchmark functions
different from those used in the training phase. The com-
parisons for each possible number t of discrete points were
performed independently in each experiment group (defined
by benchmark function and dimension). In total, we conducted
378 = 21×6×3 comparisons for ordinal and categorical vari-
ables, respectively. In each experiment, we compare ACOMV-
o and ACOMV-c without restart mechanism by measuring the
solution quality obtained by 50 independent runs. A uniform
random search (URS) method [74] is included as a baseline for
comparison. It consists in sampling search points uniformly at
random in the search domain and keeping the best solution
found.

2) Comparison results: Table X summarizes the results of
the comparison between ACOMV-o, ACOMV-c and URS for
ordinal and categorical variables. The Wilcoxon rank-sum test
at the 0.05 α-level is used to test the statistical significance
of the differences in each of the 378 comparisons. In the case
of ordinal variables, the statistical analysis revealed that in
63% of the 378 comparisons ACOMV-o reaches statistically
significantly better solutions than ACOMV-c, in 2% of the
experiments ACOMV-c is statistically significantly better than
ACOMV-o, and in the remaining 35% of the cases there
was no statistically significant difference. As expected, both
ACOMV-o and ACOMV-c outperform URS: they perform
significantly better in 98% and 93% of the cases, respec-
tively, and they never obtain statistically significantly worse
results than URS. In the case of categorical variables, the
statistical analysis revealed that in 93% of the 378 com-
parisons ACOMV-c reaches statistically significantly better
solutions than ACOMV-o and in 7% of the experiments
ACOMV-o is statistically significantly better than ACOMV-
c. Again, both ACOMV-o and ACOMV-c outperform URS.
They perform better in 96% and 78% of the cases, respectively,
and ACOMV-c never obtains statistically significantly worse
results than URS.

These experiments confirm our expectation that ACOMV-o
is more effective than ACOMV-c on problems with ordinal
variables, while ACOMV-c is more effective than ACOMV-
o on problems with categorical variables. In Fig. 7, the
comparisons on fRastriginMV are shown. As seen in the figure,
the categorical optimization approach, ACOMV-c, reaches
approximately the same objective function values no matter
whether the discrete variables are ordinal or categorical. The
continuous relaxation approach ACOMV-o performs better
than ACOMV-c in the case of ordinal variables, but its
performance is not as good when applied to the categorical
case.
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TABLE X
COMPARISON BETWEEN ACOMV -O, ACOMV -C AND UNIFORM

RANDOM SEARCH (URS) FOR TWO SETUPS OF DISCRETE VARIABLES. FOR
EACH COMPARISON, WE GIVE THE FREQUENCY WITH WHICH THE FIRST

MENTIONED ALGORITHM IS STATISTICALLY SIGNIFICANTLY BETTER,
INDISTINGUISHABLE, OR WORSE THAN THE SECOND ONE.

1st setup 2nd setup
Ordinal variables Categorical variables

ACOMV-o vs. ACOMV-c 0.63, 0.35, 0.02 0.07, 0.00, 0.93
ACOMV-o vs. URS 0.98, 0.02, 0.00 0.78, 0.12, 0.10
ACOMV-c vs. URS 0.93, 0.07, 0.00 0.96, 0.04, 0.00

Fig. 7. The plot shows the average objective function values obtained by
ACOMV-o and ACOMV-c on the 6 dimensional function fRastriginMV
after 10 000 evaluations, with the number t of discrete points in the discretiza-
tion t ∈ {2, 5, 10, 20, 30, ..., 90, 100, 200, 300, ..., 900, 1 000}.

B. Effectiveness of the restart mechanism

Here we show that ACOMV’s restart mechanism really
helps in improving its performance. We conducted 50 inde-
pendent runs using a maximum of 1 000 000 evaluations in
each run. In Fig.8, we show ACOMV’s run-length distributions
(RLDs, for short) on two multi-modal functions fAckleyMV and
fGriewankMV with continuous and categorical variables with
t = 100 discrete points. An empirical RLD gives the estimated
cumulative probability distribution for finding a solution of
a certain quality as a function of the number of objective
function evaluations. (For more information about RLDs, we
refer the reader to [47].) As expected, ACOMV’s performance
is strongly improved by the restart mechanism. For example, in
the case of fAckleyMV in two, six and ten dimensions ACOMV

reaches a solution whose objective function value is equal to or
less than 1.00E−10 with probability 1 or 100% success rate,
and in the case of fGriewankMV in two, six and ten dimensions
ACOMV reaches a solution whose objective function value is
equal to or less than 1.00E−10 with probability 1, 0.82 and
0.85 respectively. Without restart, ACOMV stagnates at much
lower success rates.

C. Performance on benchmark functions

We evaluate ACOMV on the two setups of artificial mixed-
variable benchmark functions with dimensions two, six and
ten. Half of the dimensions are discrete variables and the other
half are continuous variables. Table XI gives the numerical
results of ACOMV. The results are again measured across 50
independent runs of 1 000 000 objective function evaluations
for instances with t = 100 discrete points. ACOMV found
a solution whose objective function value is equal to or
less than 1.00E−10 with 100% success rate in all the two

Fig. 8. The RLDs obtained by ACOMV with and without restarts. The
solution quality threshold is 1.00E−10. Dim indicates the dimensionality of
the benchmark problem. Half of the dimensions are categorical variables and
the other half are continuous variables.

dimensional benchmark functions. ACOMV found solutions
of the same quality (function value equal to 1.00E−10) for
each of the six dimensional benchmark function at least once.
On the ten dimensional benchmark functions with ordinal
variables, ACOMV found the optimal solution of fAckleyMV ,
fRosenbrockMV , fSphereMV and fGriewankMV . On the ten
dimensional benchmark functions with categorical variables,
ACOMV found the optimal solution of fAckleyMV , fSphereMV
and fGriewankMV . Over dimension two, six and ten, ACOMV

obtained 100% success rate when applied to solve fAckleyMV
and fSphereMV with both setups, and obtained more than 80%
success rate when applied to fGriewankMV with both setups.

TABLE XI
EXPERIMENTAL RESULTS OF ACOMV WITH DIMENSIONS D = 2, 6, 10.
F1− F6 REPRESENT fEllipsoidMV , fAckleyMV , fRastriginMV ,

fRosenbrockMV , fSphereMV AND fGriewankMV , RESPECTIVELY. THE
VALUES BELOW 1.00E−10 ARE APPROXIMATED TO 0.00E+00, AND ARE

HIGHLIGHTED IN BOLDFACE.

D Functions
Two setups of discrete variables

Ordinal variables Categorical variables
Avg. Median Max. Min. Avg. Median Max. Min.

2

F1 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
F2 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
F3 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
F4 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
F5 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
F6 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00

6

F1 8.47e−03 0.00e+00 1.65e−01 0.00e+00 1.31e+00 4.13e−01 1.26e+01 0.00e+00
F2 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
F3 1.91+00 1.78e+00 4.38e+00 0.00e+00 2.10e+00 2.29e+00 4.38e+00 0.00e+00
F4 7.82e−01 0.00e+00 1.04e+01 0.00e+00 1.00e+01 6.90e+00 5.95e+01 0.00e+00
F5 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
F6 2.43e−07 0.00e+00 1.22e−05 0.00e+00 8.41e−04 0.00e+00 1.26e−02 0.00e+00

10

F1 1.99e+00 1.40e+00 1.10e+01 1.17e−01 1.20e+01 7.32e+00 5.48e+01 5.84e−01
F2 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
F3 1.37e+01 1.48e+01 2.46e+01 2.93e+00 1.03e+01 9.65e+00 2.03e+01 3.77e+00
F4 1.23e+01 1.32e+01 3.74e+01 0.00e+00 4.37e+01 1.91e+01 1.80e+02 1.03e+01
F5 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00 0.00e+00
F6 2.54e−03 0.00e+00 4.67e−02 0.00e+00 4.52e−03 0.00e+00 4.67e−02 0.00e+00

D. Analysis of Equation (6)

To illustrate the influence of alternative choices for Equa-
tion (6) and its parameter settings, we perform three ex-
periments on two multi-modal functions fAckleyMV and
fGriewankMV with continuous and categorical variables with
t = 100 discrete points. The three experiments are based
on the following alternative choices for Equation (6) and its
parameter settings.
(1) We modify Equation (6) to

wl =

{
ωjl , if (uil > 0),
0, if (uil = 0).

(9)
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That is, we omit the terms uil and
q

η
in Equation (6).

(2) We modify Equation (6) to

wl =

{ ωjl
uil
, if (uil > 0),

0, if (uil = 0).
(10)

That is, we omit the term
q

η
in Equation (6).

(3) We use five different values of parameter q in Equation (6);
in particular, we choose q ∈ {0.01, 0.1, 1, 10, 100} ×
0.05099, where 0.05099 is the setting obtained in the param-
eter tuning (see Table II).

We tuned the parameters of two versions of ACOMV that
use the two alternative Equations (9) and (10), respectively,
by the same automatic tuning procedure used for tuning
the original ACOMV with Equation (6) to ensure a fair
comparison; for the experiments with alternative settings of
parameter q, the other parameters were kept to the values
shown in Table II. The detailed experimental results of the
comparisons of the resulting comparisons are given in the
supplementary information page http://iridia.ulb.ac.be/supp/
IridiaSupp2011-022. Summary information based on RLDs
are given in Fig. 9 and 10. The results of experiment (1)
show that the RLDs obtained by using Equation (6) clearly
dominate those obtained by using Equation (9). In fact,
the success rates obtained by Equation (9) in dimensions
six and ten are zero and therefore not shown in Figure 9.
The same conclusions hold for experiment (2): the RLDs
obtained by using Equation (6) dominate those obtained by
using Equation (10) in all cases, illustrating in this way
the benefit of Equation (6). Similar results are obtained in
experiment (3), that is, the setting q = 0.05099 outperforms
the other settings. The only exception is for the problems
in dimension two, where a setting of q = 10 × 0.05099 is
competitive to q = 0.05099. Detailed results are available at
http://iridia.ulb.ac.be/supp/IridiaSupp2011-022.

Fig. 9. The RLDs obtained by the two ACOMV variants with Equation (6)
and (9) in 50 independent runs. The solution quality threshold is 1.00E−10.
Dim indicates the dimensionality of the benchmark problem. Half of the di-
mensions are categorical variables and the other half are continuous variables.

E. Mathematical formulation of engineering benchmark prob-
lems

1) Welded beam design problem case A: The mathematical
formulation of the welded beam design problem is given in
Table XII. The schematic view of this problem is shown in
Fig. 11

Fig. 10. The RLDs obtained by the two ACOMV variants with Equation (6)
and (10) in 50 independent runs. The solution quality threshold is 1.00E−10.
Dim indicates the dimensionality of the benchmark problem. Half of the di-
mensions are categorical variables and the other half are continuous variables.
The RLDs obtained by ACOMV with Equation (10) in dimensions two, six
and ten are correspond to the left-most, the middle and the right-most RLDs
for label ”Equation (10)”.

TABLE XII
THE MATHEMATICAL FORMULATION OF WELDED BEAM DESIGN PROBLEM

CASE A.

min f(~x) = 1.10471 x2
1x2 + 0.04811 x3x4 (14 + x2)

g1 τ(~x)− τmax ≤ 0
g2 σ(~x)− σmax ≤ 0
g3 x1 − x4 ≤ 0

g4 0.10471 x2
1 + 0.04811 x3x4 (14 + x2)− 5 ≤ 0

g5 0.125− x1 ≤ 0
g6 δ(~x)− δmax ≤ 0
g7 P − Pc(~x) ≤ 0
g8 0.1 ≤ x1, x4 ≤ 2.0
g9 0.1 ≤ x2, x3 ≤ 10.0

where τ(~x) =
√

(τ ′)2 + 2τ ′τ ′′
x2
2R + (τ ′′)2

τ ′ = P√
2x1x2

, τ ′′ = MR
J ,M = P (L+

x2
2 )

R =

√
x2
2
4 + (

x1+x3
2 )2

J = 2

{√
2x1x2

[
x2
2

12 +
(
x1+x3

2

)2
]}

σ(~x) = 6PL

x4x
2
3
, δ(~x) = 4PL3

Ex3
3x4

Pc(~x) =
4.013E

√
x2
3x

6
4

36

L2

(
1− x3

2L

√
E
4G

)
P = 6 000lb, L = 14in., E = 30× 106psi,G = 12× 106psi
τmax = 1 360psi, σmax = 30 000psi, δmax = 0.25in.

2) Welded beam design problem case B: The welded beam
design problem case B is a variation of case A. It is extended
to include two types of welded joint configuration and four
possible beam materials. The changed places are shown in
Equation 11 and Table XIII.

Fig. 11. Schematic view of welded beam design problem case A [49].
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min f(~x) = (1 + c1)x21x2 + c2 x3x4 (14 + x2)
σ(~x)− S ≤ 0

J = 2

{√
2x1x2

[
x2

2
12

+
(
x1+x3

2

)2]}
, if x6 : twoside

J = 2
{√

2x1
[
(x1+x2+x3)

3

12

]}
, if x6 : fourside

τmax = 0.577 · S

(11)

TABLE XIII
MATERIAL PROPERTIES FOR THE WELDED BEAM DESIGN PROBLEM CASE

B

Methods x5 S(103psi) E(106psi) G(106psi) c1 c2
Steel 30 30 12 0.1047 0.0481

Cast iron 8 14 6 0.0489 0.0224
Aluminum 5 10 4 0.5235 0.2405

Brass 8 16 6 0.5584 0.2566

3) Pressure vessel design problem: The pressure vessel de-
sign problem requires designing a pressure vessel consisting of
a cylindrical body and two hemispherical heads such that the
manufacturing cost is minimized subject to certain constraints.
The schematic picture of the vessel is presented in Fig. 12.
There are four variables for which values must be chosen: the
thickness of the main cylinder Ts, the thickness of the heads
Th, the inner radius of the main cylinder R, and the length of
the main cylinder L. While variables R and L are continuous,
the thickness for variables Ts and Th may be chosen only from
a set of allowed values, these being the integer multiples of
0.0625 inch. The mathematical formulation of the four cases
A, B, C and D is given in Table XIV.

4) Coil spring design problem: The problem consists in
designing a helical compression spring that holds an axial and
constant load. The objective is to minimize the volume of
the spring wire used to manufacture the spring. A schematic
of the coil spring to be designed is shown in Fig. 13. The
decision variables are the number of spring coils N , the
outside diameter of the spring D, and the spring wire diameter
d. The number of coils N is an integer variable, the outside
diameter of the spring D is a continuous one, and finally, the
spring wire diameter d is a discrete variable, whose possible

Fig. 12. Schematic view of the pressure vessel to be designed.

TABLE XIV
THE MATHEMATICAL FORMULATION THE CASES (A, B, C AND D) OF THE

PRESSURE VESSEL DESIGN PROBLEM.

No Case A Case B Case C Case D
min f = 0.6224TsRL+ 1.7781ThR

2 + 3.1611T 2
sL+ 19.84T 2

sR
g1 −Ts + 0.0193R ≤ 0
g2 −Th + 0.00954R ≤ 0

g3 −π R2L− 4
3π R

3 + 750 · 1728 ≤ 0
g4 L− 240 ≤ 0
g5 1.1 ≤ Ts ≤ 12.51.125 ≤ Ts ≤ 12.51 ≤ Ts ≤ 12.5 0 ≤ Ts ≤ 100
g6 0.6 ≤ Th ≤ 12.5 0.625 ≤ Th ≤ 12.5 0 ≤ Th ≤ 100
g7 0.0 ≤ R ≤ 240 10 ≤ R ≤ 200
g8 0.0 ≤ L ≤ 240 10 ≤ L ≤ 200

Fig. 13. Schematic view of the coil spring to be designed.

values are given in Table XV. The mathematical formulation
is in Table XVI.

TABLE XV
STANDARD WIRE DIAMETERS AVAILABLE FOR THE SPRING COIL.

Allowed wire diameters [inch]
0.0090 0.0095 0.0104 0.0118 0.0128 0.0132
0.0140 0.0150 0.0162 0.0173 0.0180 0.0200
0.0230 0.0250 0.0280 0.0320 0.0350 0.0410
0.0470 0.0540 0.0630 0.0720 0.0800 0.0920
0.1050 0.1200 0.1350 0.1480 0.1620 0.1770
0.1920 0.2070 0.2250 0.2440 0.2630 0.2830
0.3070 0.3310 0.3620 0.3940 0.4375 0.5000

TABLE XVI
THE MATHEMATICAL FORMULATION FOR THE COIL SPRING DESIGN

PROBLEM.

min fc(N,D, d) =
π2 Dd2(N+2)

4
Constraint

g1
8CfFmaxD

π d3 − S ≤ 0

g2 lf − lmax ≤ 0
g3 dmin − d ≤ 0
g4 D −Dmax ≤ 0

g5 3.0− D
d
≤ 0

g6 σp − σpm ≤ 0

g7 σp +
Fmax−Fp

K
+ 1.05(N + 2)d− lf ≤ 0

g8 σw −
Fmax−Fp

K
≤ 0

where Cf =
4D
d
−1

4D
d
−4

+ 0.615 d
D

K = Gd4

8ND3

σp =
Fp
K

lf = Fmax
K

+ 1.05(N + 2)d

Fig. 14. Schematic view of the thermal insulation system.

5) Thermal insulation systems design problem: The schema
of a thermal insulation system is shown in Fig. 14. Such a
thermal insulation system is characterized by the number of
intercepts, the locations and temperatures of the intercepts,
and the types of insulators allocated between each pair of
neighboring intercepts. In the thermal insulation system, heat
intercepts are used to minimize the heat flow from a hot to
a cold surface. The heat is intercepted by imposing a cooling
temperature Ti at locations xi, i = 1, 2, ..., n.
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The basic mathematical formulation of the classic model
of thermal insulation systems is defined in Table XVII. The
effective thermal conductivity k of all these insulators varies
with the temperature and does so differently for different
materials. Considering that the number of intercepts n is
defined in advance, and based on the model presented (n=10),
we may define the following problem variables:
• Ii ∈ M, i = 1, ..., n + 1 — the material used for the

insulation between the (i − 1)-th and the i-th intercepts
(from a set of M materials).

• ∆xi ∈ R+, i = 1, ..., n + 1 — the thickness of the
insulation between the (i− 1)-th and the i-th intercepts.

• ∆Ti ∈ R+, i = 1, ..., n+1 — the temperature difference
of the insulation between the (i − 1)-th and the i-th
intercepts.

This way, there are n+ 1 categorical variables chosen from a
set of M of available materials. The remaining 2n+2 variables
are continuous.

TABLE XVII
THE MATHEMATICAL FORMULATION FOR THE THERMAL INSULATION

SYSTEMS DESIGN PROBLEM.

f(x,T) =
∑n
i=1 Pi

=
∑n
i=1 ACi

(
Thot
Ti
− 1
) ∫Ti+1

Ti
kdT

∆xi
−

∫Ti
Ti−1

kdT

∆xi−1


Constraint

g1 ∆xi ≥ 0, i = 1, ..., n+ 1
g2 Tcold ≤ T1 ≤ T2 ≤ ... ≤ Tn−1 ≤ Tn ≤ Thot

g3
∑n+1
i=1 ∆xi = L

where C = 2.5 if T ≥ 71 K
C = 4 if 71 K > T > 4.2 K

C = 5 if T ≤ 4.2 K
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