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Abstract. Communication among agents in swarm intelligent systems
and more generally in multiagent systems, is crucial in order to coordi-
nate agents’ activities so that a particular goal at the collective level is
achieved. From an agent’s perspective, the problem consists in establish-
ing communication policies that determine what, when, and how to com-
municate with others. In general, communication policies will depend on
the nature of the problem being solved. This means that the solvability
of problems by swarm intelligent systems depends, among other things,
on the agents’ communication policies, and setting an incorrect set of
policies into the agents may result in finding poor solutions or even in
the unsolvability of problems. As a case study, this paper focus on the
effects of letting agents use different communication policies in ant-based
clustering algorithms. Our results show the effects of using different com-
munication policies on the final outcome of these algorithms.

1 Introduction

The term Swarm Intelligence is used to denote the relatively new discipline that
studies systems that exhibit self-organizing properties at the global level from
interactions of their lower level components. These studies are often inspired by
the observation of social insects and other animal societies [1]. We will refer to
systems with these features as swarm intelligent systems.

For them to work, swarm intelligent systems need the interaction of their con-
stituent entities. In natural settings, stigmergy [6] plays a key role as it provides
the means for indirect communication among insects through the environment.
This same phenomenon has been successfully exploited in many systems used to
solve combinatorial optimization problems [4], in clustering algorithms [7], and
in robotic systems [10]. In spite of these successful experiences, we need to con-
sider the question of whether agents should/could communicate in other ways to
achieve organization or better solutions to problems. There is no general answer
nor general communication policy that will apply equally well to all problems.
This is why we think we need to study the effects of letting agents use different
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communication policies. With this knowledge and considering the characteristics
of a particular problem, we could either improve the performance of a swarm
intelligent system or permit its application to a problem that was not possible
before. This is the main motivation of our work.

2 Communication Policies Among Agents in Swarm
Intelligent Systems

The collective behavior of social insects and other animal societies has inspired
the design of metaheuristics that have found their first applications in the field
of optimization [4, 11]. One of the first of such metaheuristics is Ant Colony
Optimization, or ACO for short [3]. In ACO, a colony of artificial ants or agents
cooperatively find good solutions to discrete optimization problems. The commu-
nication policy used by agents in ACO is to indirectly communicate through the
environment by means of stigmergy. Stigmergy was first proposed by Grassé [6]
to explain the construction of nests by the termites Cubitermes and Macroter-
mes. Grassé observed that when workers of Macrotermes bellicosus were placed
in a container with some soil pellets, the insects carried about and put down
pellets in an apparently random fashion after an exploration phase in which
they moved through the container without taking any action. At this stage, a
pellet just put down by a termite worker is often picked up and placed some-
where else by another worker. When a pellet is placed on top of another, the
resultant structure appears to be much more attractive and termites soon start
piling more pellets nearby, making the dropping spot even more attractive [17].

In ACO, we can see stigmergy in action whenever an artificial ant deposits
a pheromone trail on a problem solution space. If an artificial ant come across
a pheromone trail, it is attracted to it, very much like termites are attracted
by clusters of soil pellets. By means of this indirect communication channel,
ants share knowledge and the pheromone trail is a “blue print” to build a good
solution to the problem at hand.

Another swarm intelligent system that relies on stigmergy, and that is per-
haps more related to the behavior of termites, is ant-based clustering which was
introduced by Deneubourg et al. [2] using a model for spatial sorting. A group of
agents exhibiting the same behavior move randomly over a toroidal square grid.
In the environment there are objects that were initially scattered in a random
fashion. The objects can be picked up, moved or dropped in any free location
on the grid. An object is picked up with high probability if it is not surrounded
by other objects of the same type and is dropped by a loaded agent if its neigh-
borhood is populated by other objects of the same type and the location of the
agent has no object on it. Lumer and Faieta [12] generalized the spatial sorting
algorithm to apply it to exploratory data analysis.

The implementations of the techniques described in the preceding paragraphs
can be considered swarm intelligent systems. Both of them use indirect commu-
nication among agents through local modifications of the environment as their
principal inter-agent communication policy. But, can we expect better results
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if we let agents communicate directly in ACO and ant-based clustering algo-
rithms? Would the results obtained after doing so be problem dependent? Is it
convenient to maintain the same communication policy during execution?

All these questions are related to the agents’ communication policies and
their effects in swarm intelligent systems. A communication policy represents
the way an agent communicates with others. It must establish what informa-
tion/knowledge to exchange, the way this exchange is to be done, and the ap-
propriate moment to do so. A communication policy may be dynamic, that is, an
agent may find convenient to change the way it communicates with other agents
in a particular time or situation. It may also be selective, or in other words, it
may apply only for a selected group of agents, etc. These and other properties
may also be identified, and for all of them, there is a lack of knowledge regarding
their effects on a particular problem when used in a swarm intelligent system.

By establishing well-founded guidelines for the design of communication poli-
cies among agents in swarm intelligent systems, we would be giving an important
step towards the definition of a general methodology that would spread the prac-
tical use of swarm intelligence.

In this paper we focus on ant-based clustering algorithms, a particular kind
of swarm intelligent system, and on the effects on the final clustering of letting
agents use different communication policies.

3 Ant-Based Clustering Algorithms: A Case Study

In this section, we will describe a series of experiments that show how different
inter-agent communication policies affect the performance and final outcome of
a swarm intelligent system, in this case, an ant-based clustering algorithm. We
will start by giving some background on ant-based clustering algorithms, then
we will present our experiments setup and our results.

3.1 Background

Prior to the existence of ant-based clustering algorithms as such, Deneubourg
et al. [2] proposed a computational model for spatial sorting. Deneubourg et
al.’s model was later extended by Lumer and Faieta [12] to allow its application
to exploratory data analysis. In their model, objects represent data items that
belong to a database. These objects are randomly scattered on a periodic square
grid on which randomly moving agents group them according to their similarity.
In order to do that, a similarity (or dissimilarity) measure between pairs of
data items is needed to compute the probabilities of picking and dropping data
elements on the grid. In their model, the probability of picking a data element i

is defined as pp(i) =
(

kp

kp + f(i)

)2

where kp is a constant and f(i) is a similarity

density measure with respect to element i. Likewise, the probability of dropping

a data element is given by pd(i) =
{

2f(i) if f(i) < kd

1 otherwise where kd is a constant.

The similarity density f(i) for an element i, at a particular grid location τ , is
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defined as f(i) = max

⎧⎨
⎩

1
s2

∑
j∈Neigh(τ)

(
1 − d(i, j)

α

)
, 0

⎫⎬
⎭ where s2 is the size of

the perception area Neigh(τ), centered at the location of the agent and α is a
scaling factor of the dissimilarity measure d(i, j) between elements i and j.

After the first appearance of this algorithm, many other variations of it have
been proposed to improve its output quality [13,7], its convergence speed [8], and
its applicability to large databases [16]. However, no previous works are known
that study the effects of different communication strategies among agents in
these algorithms.

3.2 Experiments Setup

In total, four different information exchange strategies were studied: direct in-
formation exchange for updating the agents’ environment representations, direct
information exchange for changing the agents’ dropping spot search trajectories,
intentional indirect information exchange for updating the agents’ environment
representations, and intentional indirect information exchange for changing the
agents’ dropping spot search trajectories.

To design the experiments, questions such as: What information will agents
exchange? When will they exchange it? How will they do it? What will they
do with that information? had to be answered. Although there are no general
answers to them, we tried to explore four issues when we proposed answers to
them. First, what are the effects on the performance of the algorithms when
agents exchange information from different levels of abstraction? Second, what
is the impact on the performance of the algorithms when agents exchange infor-
mation in different ways? Third, what happens when agents use the information
for different purposes? And fourth, what happens when agents choose to use
immediately or after some delay the exchanged information?

Let us discuss how we coped with these issues and what were our results. The
information that agents exchanged in the experiments belong to two different
levels of abstraction: memorized grid locations on which an agent had dropped a
data object, and pointers to promising dropping locations. The first choice was
needed in order to compare the performance of the algorithms with and without
communicating agents. In fact, this model is just a simple extension of Lumer an
Faieta’s short-term memory agents model. The second choice tries to implement
the idea of map exchanging agents. Maps were implemented as growing neural
gas networks or GNGs [5], which are distributed in the grid and in the attribute
space of data objects. GNGs provide more information than just memorized
dropping spots because they can adapt to changes in the spatial distribution of
objects.

GNGs were designed to overcome some of the limitations of conventional self-
organizing maps; namely, the a priori fixed number of neurons and the problem
of “dead” neurons or neurons that do not update their weight vectors due to a
misplacing in the input space. The GNG training algorithm successively adds
new units to an initially small network by evaluating local statistical measures
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gathered during previous adaptation steps. In this way, a GNG network topology
is generated incrementally by using a competitive Hebbian learning rule and its
dimensionality depends on the input data and varies locally.

With regard to the moment in which agents should exchange information,
we decided to couple this issue with the way agents were going to exchange
information. That is, agents decided when to exchange information depending
on the exchange method used. When agents exchanged information directly,
they did it whenever they met on the grid. When they exchanged information
indirectly, they did it whenever an agent came across an information packet on
the grid.

One of the most critical part in the experiments design was to decide what
agents should do with the exchanged information. Our hypothesis was that
agents with information about the spatial distribution of data on the grid, would
be able to choose the best location on which to drop an object (if they were
loaded), or the best regions of the environment to explore (if they were un-
loaded). With informed decisions, agents could create better clusters in a faster
way. We therefore decided to explore the idea by (i) letting agents represent their
environment and after every exchange, update or enrich their representations,
and (ii) changing their dropping spot search trajectories, i.e., they were allowed
to “change their minds” regarding their supposed best dropping spot on the
grid.

To evaluate the quality of the obtained clustering, the same validity measures
used by Handl et al. [7] were used: the F -Measure, which gives us some idea of
how well a clustering algorithm is identifying the classes present in a database
using the information of the correct classification1; the Rand statistic, which is a
similarity measure between the known perfect classification C and the partition
generated by the clustering algorithm P , considering all pairwise assignments;
the Dunn index, which measures how compact and well separated are the identi-
fied clusters; and the intra-cluster variance, which measures how similar are the
elements belonging to the same cluster.

We used two real data collections from the UCI Machine Learning Repos-
itory [9]. These were: the iris plant and wine recognition databases. To elim-
inate the bias on similarity measures provoked by different scales within data
attributes, both databases were standardized. The similarity measure used in
all the experiments was the cosine metric2. The agents’ picking and dropping
probabilities were computed using the same expressions as Lumer and Faieta.
However, since the cosine metric is a similarity measure, the expression used to
compute the similarity density is not directly applicable. Therefore, for the local

similarity density f(i), we used f(i) =
1
s2

∑
j∈Neigh(τ)

(
1

1 + e−S
d(i,j)

α +D

)
where S

is the steepness of the response curve and D serves as a displacement factor. In
our experiments, S was fixed to 5 because it provides a similarity value close to 0
when the cosine measure is minimum, that is, when the cosine measure gives a

1 Which is available for our experiments.
2 In preliminary experiments, it proved to give better results than Euclidean distance.
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value of −1, and D to 1 because this allows us to better distinguish vectors with
separation angles between 0 and π/2.

To observe the effects of information exchange among agents during the clus-
tering process, the data partition obtained every 10,000 simulation cycles was
evaluated using the validity measures described above. Each simulation cycle
was composed of N individual actions, where N was the number of agents in the
simulation. All algorithms were tested 30 times with every database for 1,000,000
simulation cycles. We tried with populations of 10 and 30 agents within an en-
vironment of 100 × 100 locations in all the experiments.

4 Results

The following sections present in detail the conclusions drawn from the experi-
mental results with each of the tested strategies. For space restrictions, we refer
the interested reader to [15, 14] for the complete set of results. In this paper we
will only show some selected graphs to support our conclusions.

4.1 Direct Information Exchange

As we said before, direct information exchange occurs only when two or more
agents meet at a location on the grid. Hence, the probability of an encounter
between two agents moving randomly raises as the number of agents is increased
(assuming a constant size of the grid). In these experiments, we tried to take
advantage of this fact and use it to study the effect of increasing the information
exchange frequency among agents. This is the reason of using two different sizes
of agent populations in all the experiments.

The results obtained when the exchanged information was used for updating
the agents’ environment representations are somewhat discouraging. The worst
performing algorithm is the one with map updating agents, and the second worst
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Fig. 1. F -Measure scores over time for the Iris Plant and Wine databases of all tested
algorithms. The results were obtained using 10 agents. Values closer to 1 are better.
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Fig. 2. F -Measure scores over time for the Iris Plant and Wine databases of all tested
algorithms. The results were obtained using 10 agents. Values closer to 1 are better.

is the memory updating agents algorithm. In the case of the memory updating
agents algorithm, the relatively poor performance is not as discouraging as is
the obtained with map creating agents. Figure 1 shows the F -Measure scores
obtained by the tested algorithms on both test databases using 10 agents.

The results obtained when the exchanged information was used for changing
the agents’ dropping spot search trajectory are quite different from the previ-
ous ones. In this case, the clustering quality is improved by the communicating
agents algorithms. Figure 2 shows the F -Measure scores obtained by the tested
algorithms on both test databases using 10 agents.

4.2 Indirect Information Exchange

In the experiments run for exploring the effects of intentional indirect infor-
mation exchange among agents in ant-based clustering algorithms, agents lay
packets which contain information about data distribution on the environment
for others to pick and use. This strategy is inspired by the anal trophallaxis
phenomenon [17] among social insects but it also has other reasons. Direct com-
munication among agents in ant-based clustering has two disadvantages: (i) even
when the number of exchanges increases, we cannot expect many of them to hap-
pen since the number of agents must be kept small (for performance reasons),
and (ii) many exchanges do not have any effect since agents walk in a randomly
fashion, i.e., two agents coincide many times, over and over again, before they
follow different trajectories. So the idea is that if we let agents lay information
on their environment, it could be possible to increase dramatically the number
of exchanges without even increasing the number of agents.

Two information laying policies were studied: a periodic laying policy and an
adaptive laying policy. With the periodic laying policy, an agent drops informa-
tion packets every given number of simulation cycles. With the adaptive laying
policy, an agent drops information after it has modified the environment and a
given number of simulation cycles have passed.
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Fig. 3. Dunn index scores over time for the Iris Plant and Wine databases of all tested
algorithms. The results were obtained using 30 agents using a periodic laying policy.
As a reference, the Dunn index of the correct clustering is shown.

The results obtained when the exchanged information was used for updating
the agents’ environment representations, show that the more information avail-
able to the agents, the better the performance. With a periodic laying frequency,
the higher the frequency, the better. And with the adaptive laying policy, the
shorter the delay, the better. This results confirm the intuition which says that
to maintain an up-to-date environment representation, an agent has to acquire
fresh information all the time. Figure 3 shows the Dunn index scores obtained
by the tested algorithms on both test databases using 30 agents and a periodic
laying policy.
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When agents use the information only to decide whether to change their drop-
ping spot search trajectory, the more information available to them, the worse.
This result is also sound if we think of agents as “changing their minds” based
on the information provided by other agents. An agent may receive contradicting
information or may be misleaded to a nonpromising region in the environment.
Therefore, with this information exploitation strategy, high laying frequencies
and short delays have negative impact on the algorithms performance. Figure 4
shows the Total intra-cluster variance scores obtained by the tested algorithms
on both test databases using 10 agents and a periodic laying policy.

5 Conclusions

In this paper, the effects on clustering quality and convergence speed of direct
and indirect communication among agents in ant-based clustering algorithms
were studied. The results show that nonstigmergic communication among agents
in these algorithms has effects on the final clustering obtained by the algorithm.
The final effects depend on the type of information exchanged, its use, its avail-
ability and the number of participating agents. Our results confirm that different
communication policies in swarm intelligent systems have effects on their perfor-
mance. This is why we need to formalize the effects of letting agents use different
communication policies. This is a first step towards that goal. With this knowl-
edge and considering the characteristics of a particular problem, we could either
improve the performance or permit the application of a swarm intelligent sys-
tem to solve it. Future work should be focused on studying the effects of using
different communication policies in ACO and other swarm-based approaches.
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