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Abstract. Swarm intelligence is the collective problem-solving behavior of
groups of animals and artificial agents. Often, swarm intelligence is the result
of self-organization, which emerges from the agents’ local interactions with one
another and with their environment. Such local interactions can be positive, neg-
ative, or neutral. Positive interactions help a swarm of agents solve a problem.
Negative interactions are those that block or hinder the agents’ task-performing
behavior. Neutral interactions do not affect the swarm’s performance. Reducing
the effects of negative interactions is one of the main tasks of a designer of ef-
fective swarm intelligence systems. Traditionally, this has been done through the
complexification of the behavior and/or the characteristics of the agents that com-
prise the system, which limits scalability and increases the difficulty of the design
task. In collaboration with colleagues, I have proposed a framework, called incre-
mental social learning (ISL), as a means to reduce the effects of negative interac-
tions without complexifying the agents’ behavior or characteristics. In this paper,
I describe the ISL framework and three instantiations of it, which demonstrate the
framework’s effectiveness. The swarm intelligence systems used as case studies
are the particle swarm optimization algorithm, ant colony optimization algorithm
for continuous domains, and the artificial bee colony optimization algorithm.

1 Introduction

Some animals form large groups that behave so coherently and purposefully that they
truly seem to be superorganisms with a mind of their own [5]. These groups are often
called swarms because the individuals that comprise them are usually of the same kind
and are so numerous that they resemble true insect swarms. If the behavior of a swarm
allows it to solve problems beyond the capabilities of any of its members, then we say
that the swarm exhibits swarm intelligence [3]. One of the best known examples of
swarm intelligence is the ability of ant colonies to discover the shortest path between
their nest and a food source [11]. The members of a swarm usually cannot perceive
or interact with all the other members of the swarm at the same time. Instead, swarm
members interact with one another and with their environment only locally. As a re-
sult, a swarm member cannot possibly supervise or dictate the actions of all the other
swarm members. This restriction implies that swarm intelligence is often the result of
self-organization, which is a process through which patterns at the collective level of a
system emerge as a result of local interactions among its lower level components [4].
Other mechanisms through which swarm intelligence may be obtained are leadership,
blueprints, recipes, templates, or threshold-based responses [4,9].
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Through the study of natural swarm intelligence systems, scientists have identified a
number of principles and mechanisms that make swarm intelligence possible [9]. The
existence of these principles and mechanisms makes the design of artificial swarm intel-
ligence systems possible because we can make robots or software agents use the same
or similar rules to the ones animals use. The first efforts toward the development of arti-
ficial swarm intelligence systems began in the 1990s with pioneering works in robotics,
data mining, and optimization [6]. In this paper, I focus on swarm intelligence systems
for optimization, which have been very successful in practice [31,35].

A swarm intelligence algorithm for optimization consists of a set of agents, called
swarm, or colony, that either generates candidate solutions or represents the actual
set of candidate solutions. For example, in particle swarm optimization (PSO) algo-
rithms [18], the swarm is composed of “particles” whose positions in the search space
represent candidate solutions (see Section 4.1). In ant colony optimization (ACO) al-
gorithms [7], the colony is made of “ants” that generate solutions in an incremental
way guided by “pheromones” (see Section 4.2). In any case, the size of the swarm or
colony is a parameter that determines the number of candidate solutions generated at
each iteration of the algorithm: the larger the swarm, the more candidate solutions are
generated and tried per iteration. The effect of the swarm size on the algorithms’ per-
formance depends on the amount of time allocated to the optimization task [7,27]: If a
long time is available, large swarms usually return better results than small swarms. On
the contrary, if only a short amount time is allocated, small swarms return better results
than large swarms. In Section 2, I provide an explanation of this phenomenon in terms
of positive and negative interactions among agents. For the moment, it is enough to say
that the discovery of good solutions to an optimization problem typically occurs when
swarms are near a convergence state. Thus, since small swarms reach a convergence
state sooner than large swarms, it follows that small swarms discover good solutions
before large swarms. However, small swarms converge before the allocated time runs
out, which causes search stagnation.

In the context of optimization, the incremental social learning (ISL) framework
[26,29,24] exploits the faster convergence of small swarms while avoiding search stag-
nation. This is accomplished by varying the population size over time. An optimization
algorithm instantiating the ISL framework starts with a small population in order to find
good quality solutions early in the optimization process. As time moves forward, new
individuals are added to the population in order to avoid search stagnation. The newly
added individuals are not generated at random. They are initialized using information
already present in the population through a process that simulates social learning, that
is, the transmission of knowledge from one individual to another. These two elements,
an incremental deployment of individuals and the social learning-based initialization of
new individuals, are the core of the ISL framework. The actual implementation of these
elements may vary from system to system but the goals of each element remain the
same. ISL has not only been used in optimization but also in swarm robotics [28,24]. In
both cases, an important improvement of the system’s performance has been obtained.
With this paper, I hope to spark interest in the application and theoretical study of the
ISL framework.
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The rest of the paper is structured as follows. In Section 2, I explain the three kinds
of interactions that occur in multiagent systems, including swarm intelligence systems.
This explanation motivates the introduction of the ISL framework, which is described
in detail in Section 3. In Section 4, I describe the three case studies that are used to
show the effectiveness of the ISL framework in the context of optimization. I close this
paper with some conclusions in Section 5.

2 Interactions in Multiagent and Swarm Intelligence Systems

In multiagent systems, including swarm intelligence systems, individual agents interact
with one another and with their environment in order to perform a task. It is possible to
classify all inter-agent and agent-environment interactions as “positive”, “negative”, or
“neutral” based on whether they help the system achieve its goals or not [10]. Interac-
tions that facilitate the accomplishment of the agents’ assigned task are called positive.
For example, a positive interaction would be one in which agents cooperate to per-
form a task that agents could not if they acted individually (see e.g., [19]). Negative
interactions, also called interference [23], friction [10], or repulsive and competitive
interactions [14], are those that block or hinder the ability of the system’s constituent
agents to perform the assigned task. Since negative interactions are an obstacle toward
the efficient completion of a task, they decrease the performance of the system. For
instance, in swarm intelligence algorithms for data clustering [13], agents can undo the
actions of other agents, which increases the time needed to find a satisfactory final clus-
tering. An interaction that does not benefit or harm progress toward the completion of a
task is called neutral. An example of a neutral interaction could be a message exchange
between two agents that just confirms information they already have and thus do not
have to change plans.

Three difficulties arise when trying to directly measure the effects of interactions in
a multiagent system. First, in many systems agent interactions are not predictable, that
is, it is impossible to know in advance whether any two agents will interact and whether
they will do so positively, negatively, or neutrally. Consequently, one can determine
whether the effects of an interaction are beneficial or not only after the interaction has
occurred. Second, an interaction may be positive, negative or neutral, depending on
the time scale used to measure its effect. For example, an interaction that involves two
robots performing collision avoidance can be labeled as a negative interaction in the
short term because time is spent unproductively. However, if the time horizon of the
task the robots are performing is significantly longer than the time frame of a collision
avoidance maneuver, then the overall effect of such an interaction may be negligible.
In this case, such interaction may be labeled as neutral. Third, the nature of the inter-
actions themselves poses a challenge. In some systems, agents interact directly on a
one-to-one or one-to-many basis. In other systems, agents interact stigmergically [12],
that is, indirectly through the environment. Stigmergy makes the classification of inter-
actions difficult because there may be extended periods of time between the moment an
agent acts and the moment another agent (or even the acting agent itself) is affected by
those actions. With these difficulties, the only practical way to measure the effects of
interactions is to do it indirectly through the observation of the system’s performance.
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This is the approach my colleagues and I have taken to measure the effects of ISL (see
Section 4).

Swarm intelligence systems are special kinds of multiagent systems. In contrast with
traditional multiagent systems in which agents usually play a very specific role, swarm
intelligence systems are usually composed of identical individuals. This feature has pro-
found effects on the difficulty of the design task. The main problem is that the designer
of a swarm intelligence system has to devise individual-level behaviors that foster pos-
itive interactions and, at the same time, minimize the number of negative interactions.
Unfortunately, it is not always possible to achieve both goals simultaneously. For ex-
ample, Kennedy and Eberhart [18], the designers of the first PSO algorithm, pondered
different candidate particle interaction rules before proposing the rules that we now
know (see Section 4.1). Their ultimate goal was to design rules that promoted posi-
tive interactions between particles. In the final design, particles cooperate, that is, they
engage in positive interactions, by exchanging information with one another about the
best solution to an optimization problem that each particle finds during its lifetime. It
is hoped that this information exchange helps the algorithm improve the quality of the
solutions by making particles move toward promising regions in the search space. At
the same time, however, such an exchange of information may make particles evaluate
regions of the search space that may in fact not contain the optimal solution or improve
their current best estimate. When this happens, objective function evaluations are spent
unproductively. The trade-off between solution quality and speed that many optimiza-
tion algorithms exhibit is the result if these opposite-effect processes. As I said earlier,
it is not possible to know in advance which particle interactions will be positive, or
negative and thus a balance between these two kinds of interactions is always sought,
usually through appropriate parameter settings [21].

Despite the aforementioned difficulties, swarm intelligence systems often exhibit the
following two properties that make the management of negative interactions possible:

1. The number of negative interactions increases with the number of agents in the sys-
tem. This effect is the result of the increased number of interactions within the sys-
tem. The larger the number of agents that comprise the system, the more frequently
negative interactions occur.

2. The number of negative interactions tends to decrease over time. At one extreme of
the spectrum, one can find a system in which interactions between agents are com-
pletely random or not purposeful. In such a case, it is expected that agents cannot
coordinate and thus, cannot perform useful work. As a result, the number of negative
interactions remains constant over time. At the other extreme of the spectrum, one
finds well-behaved systems consisting of a number of agents whose interaction rules
are designed in order to make agents coordinate with each other. Initially, it is ex-
pected that many negative interactions occur because agents would not have enough
knowledge about their current environment. However, over time, the behavioral rules
of these agents would exploit any gained knowledge in order to make progress to-
ward the completion of the assigned task. Thus, in cases like these, the number of
negative interactions decreases over time.
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The incremental social learning framework, which will be described next, exploits the
two aforementioned properties in order to control, up to a certain extent, the number of
negative interactions in a swarm intelligence system.

3 Incremental Social Learning

A framework called incremental social learning (ISL) was proposed by the author and
colleagues [26,29,24] to reduce the effects of negative interactions in swarm intelligence
systems. As a framework, ISL offers a conceptual algorithmic structure that does not
prescribe a specific implementation of the ideas on which it relies. Each instantiation of
ISL will benefit from knowledge about the specific application domain, and therefore,
specific properties of the framework should be analyzed in an application-dependent
context.

The ISL framework consists of two elements that exploit the two properties men-
tioned in Section 2. The first element of the framework directly reduces the number of
negative interactions within a system by manipulating the number of agents. The strat-
egy for controlling the size of the agent population exploits the second property, that is,
that the number of negative interactions tends to decrease over time. Under the control
of ISL, a system starts with a small population. Over time, the population grows at a rate
determined by a user-defined agent addition criterion. Two phenomena with opposite
effects occur while the system is under the control of the ISL framework. On the one
hand, the number of negative interactions increases as a result of adding new agents to
the swarm (first property described in Section 2). On the other hand, the number of neg-
ative interactions decreases because the system naturally tends toward a state in which
fewer negative interactions occur (second property described in Section 2). The second
element of the framework is social learning. This element is present before a new agent
freely interacts with its peers. Social learning is used so that the new agent does not
disrupt the system’s operation due to its lack of knowledge about the environment or
the task. Leadership, a swarm intelligence mechanism [4,9], is present in the framework
in the process of selecting a subset of agents from which the new agent learns. The best
strategy to select such a set depends on the specific application. However, even in the
case in which a random agent is chosen as a “model” to learn from, knowledge transfer
occurs because the selected agent will have more experience than the new agent that is
about to be added.

The two elements that compose ISL are executed iteratively as shown in Algorithm 1.
In a typical implementation of the ISL framework, an initial population of agents is cre-
ated and initialized (line 4). The size of the initial population depends on the specific
application. In any case, the size of this initial population should be small in order to re-
duce interference to the lowest possible level. A loop allows the interspersed execution
of the underlying system and the creation and initialization of new agents (line 7). This
loop is executed until some user-specified stopping criteria are met. Stopping criteria
can be specific to the application or related to the ISL framework. For example, the
framework may stop when the task assigned to the swarm intelligence system is com-
pleted or when a maximum number of agents are reached. While executing the main
loop, agent addition criteria, which are also supplied by the user, are repeatedly evalu-
ated (line 8). The criteria can range from a predefined schedule to conditions based on
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Algorithm 1. Incremental social learning framework

Input: Agent addition criteria, stopping criteria
1: /* Initialization */
2: t← 0
3: Initialize environment Et

4: Initialize population of agents Xt

5:
6: /* Main loop */
7: while Stopping criteria not met do
8: if Agent addition criteria is not met then
9: default(Xt,Et) /* Default system */

10: else
11: Create new agent anew
12: slearn(anew,Xt) /* Social learning */
13: Xt+1 ← Xt ∪ {anew}
14: end if
15: Et+1 ← update(Et) /* Update environment */
16: t← t+ 1
17: end while

statistics of the system’s progress. If the agent addition criteria are not met, the set of
agents work normally, that is, the underlying swarm intelligence system is executed. In
line 9, such an event is denoted by a call to the procedure default(Xt,Et). If the agent
addition criteria are satisfied, a new agent is created (line 11). In contrast to a default
initialization such as the one in line 4, this new agent is initialized with information ex-
tracted from a subset of the currently active population (line 12). Such an initialization
is denoted by a call to the procedure slearn(anew,Xt). This procedure is responsible
for the selection of the agents from which the new agent will learn, and for the actual
implementation of the social learning mechanism. Once the new agent is properly ini-
tialized, it becomes part of the system (line 13). In line 15, we explicitly update the
environment. However, in a real implementation, the environment may be continuously
updated as a result of the system’s operation.

In most swarm intelligence systems, the population of agents is large and homoge-
neous, that is, it is composed of agents that follow exactly the same behavioral rules.
Thus, any knowledge acquired by an agent is likely to be useful for another one. The so-
cial learning mechanism used in an instantiation of the ISL framework should allow the
transfer of knowledge from one agent to the other. In some cases, it is possible to have
access to the full state of the agent that serves as a “model” to be imitated, and thus, the
social learning mechanism is simple. In other cases, access to the model agent’s state
may be limited and a more sophisticated mechanism is required. In most cases, the re-
sult of the social learning mechanism will not be simply a copy of the model agent’s
state, but a biased initialization toward it. Copying is not always a good idea because
what may work very well for an agent in a system composed of n agents may not work
well in a system of n+ 1 agents.
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4 Case Studies

In this section, I will briefly describe the three case studies that colleagues and I used in
order to measure the effectiveness of ISL in the context of optimization. The swarm in-
telligence algorithms used were the particle swarm optimization (PSO) algorithm [18],
the ant colony optimization algorithm for continuous domains (ACOR) [33], and the
artificial bee colony (ABC) algorithm [17].

4.1 Case Study 1: Particle Swarm Optimization

The Basic Algorithm. In PSO algorithms [18], very simple agents, called particles,
form a swarm and move in an optimization problem’s search space. Each particle’s
position represents a candidate solution to the optimization problem. The position and
velocity of the i-th particle along the j-th coordinate of the problem’s search space at
iteration t are represented by x t

i,j and v t
i,j , respectively. The core of the PSO algorithm

is the set of rules that are used to update these two quantities. These rules are:

v t+1
i,j = wv t

i,j + U(0, ϕ1)(p
t
i,j − x t

i,j) + U(0, ϕ2)(l
t
i,j − x t

i,j) , (1)

x t+1
i,j = x t

i,j + v t+1
i,j , (2)

where w, ϕ1 and ϕ2 are parameters of the algorithm, U(a, b) represents a call to a
random number generator that returns a uniformly distributed random number in the
range [a, b), p t

i,j represents the j-th component of the best solution ever visited by the
i-th particle, and l ti,j represents the j-th component of the best solution ever visited by
a subset of the swarm referred to as the i-th particle’s neighborhood. The definition of
each particle’s neighborhood is usually parametric, fixed, and set before the algorithm
is run.

Integration with ISL. The ISL framework can be instantiated in different ways in
the context of PSO algorithms. Here, I present the most basic variant, which was first
described in [26] and benchmarked in [29]. A more sophisticated variant that exhibits a
much better performance is presented in [25].

The most basic instantiation of the ISL framework in the context of PSO algorithms
is a PSO algorithm with a growing population size called incremental particle swarm
optimizer (IPSO). In IPSO, every time a new particle is added, it is initialized using the
following rule:

x′
new,j = xnew,j + U(pmodel,j − xnew,j), (3)

where x′
new,j is the new particle’s updated position, xnew,j is the new particle’s original

random position, pmodel,j is the model particle’s previous best position, and U is a uni-
formly distributed random number in the range [0, 1). This rule moves a new particle
from an initial randomly generated position in the problem’s search space to one that is
closer to the position of a model particle. Once the rule is applied for each dimension,
the new particle’s previous best position is initialized to the point x′

new and its velocity
is set to zero. The random number U is the same for all dimensions in order to ensure
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Fig. 1. Percentage of test cases in which the performance of IPSO (a) and IPSOLS (b) is better or
no worse (according to a Wilcoxon test at a significance level of 0.05) than the performance of
other comparable algorithms

that the new particle’s updated previous best position will lie somewhere along the di-
rect attraction vector pmodel −xnew. Finally, the new particle’s neighborhood, that is, the
set of particles from which it will receive information in subsequent iterations, is gen-
erated at random using the same parameters used to generate the rest of the particles’
neighborhoods.

A better performing variant of IPSO, called IPSOLS, uses a local search procedure.
In the context of the ISL framework, a call to a local search procedure may be inter-
preted as a particle’s “individual learning” ability since it allows a particle to improve its
solution in the absence of any social influence. In experiments with IPSOLS and other
algorithms, we used Powell’s conjugate directions set method [32] as local search.
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Results. A condensed view of the results obtained with IPSO and IPSOLS in [29] is
shown in Fig. 1. The figure shows the percentage of test cases (a total of 24 cases:
12 benchmark functions and two neighborhood types) in which the performance of
IPSO and IPSOLS is better than or indistinguishable from the performance of reference
algorithms (in a statistical sense). The reference algorithms are a PSO algorithm with
three different population sizes and a PSO algorithm with a sophisticated mechanism
for changing the population size over time (EPUS) [16]. The algorithms used in the
comparison with IPSOLS are also a PSO algorithm with local search and three different
population sizes, EPUS with local search, and a randomly restarted local search. Details
about the experimental setup can be found in [29].

Using IPSO is advantageous when the optimal population size for a particular budget
in terms function evaluations is not known in advance. IPSO is advantageous in these
cases because a specific population size will produce acceptable results only for runs of
a particular length. For example, in our experiments, a PSO algorithm with 10 particles
returned good results only for runs of 1000 function evaluations. However, if more
time is available, 10 particles return poor results in comparison with larger swarms. In
contrast, IPSO has a competitive performance for runs of different length as can be seen
in Fig. 1. In any case, the absolute quality of the results obtained with the use of a local
search procedure is much better than without local search. Thus, the results in subfigure
(b) are more interesting. Here, IPSOLS’s performance is clearly better than that of the
other algorithms. The reason is that the combination of ISL, PSO and a local search
procedure makes particles in IPSOLS move from one local optimum to another [30],
producing high quality solutions in a few iterations of the algorithm.

4.2 Case Study 2: Ant Colony Optimization

The Basic Algorithm. ACOR [33] maintains a solution archive of size k that is used
to keep track of the most promising solutions and their distribution over the search
space. Initially, the solution archive is filled with randomly generated solutions. The
archive is then updated as follows. At each iteration, m new solutions are generated
and from the k +m solutions that become available, only the best k solutions are kept.
The mechanism responsible for the generation of new solutions samples values around
the solutions si with i ∈ {1, . . . , k} in the archive. This is done on a coordinate-per-
coordinate basis using Gaussian kernels defined as sums of weighted Gaussian func-
tions. The Gaussian kernel for coordinate j is

Gj(x) =
k∑

i=1

ωi
1

σij

√
2π

e
− (x−μij )2

2σij
2

, (4)

where j ∈ {1, . . . , D} and D is the problem’s dimensionality. The mean and variance
of these Gaussian functions are set as follows: μij = sij , and

σij = ξ

k∑

r=1

|srj − sij |
k − 1

, (5)

which is the average distance between the j-th component of the solution si and the
j-th component of the other solutions in the archive, multiplied by a parameter ξ.
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The weight ωi associated with solution si depends on its quality, represented by its
ranking in the archive, rank(i) (the best solution is ranked first and the worst solution is
ranked last). This weight is calculated using also a Gaussian function:

ωi =
1

qk
√
2π

e
−(rank(i)−1)2

2q2k2 , (6)

where q is a parameter of the algorithm. During the solution generation process, each
coordinate is treated independently. For generating the j-th component of a new so-
lution, the algorithm chooses first an archive solution with a probability proportional
to its weight. Then, the algorithm generates a normally-distributed random number
with mean and variance equal to μij and σij as defined above. This number is the
j-th component of the new solution. This process repeated m times for each dimension
j ∈ {1, ..., D} in order to generate m new candidate solutions.

Integration with ISL. The instantiation of the ISL framework with the ACOR algo-
rithm requires increasing the number of solutions handled per iteration and the biased
initialization of new solutions. The resulting algorithm is called IACOR if no local
search is used, and IACOR-LS if it is. These algorithms were first proposed in [20].

In IACOR the initial size of the solution archive is small. As the optimization process
proceeds, new solutions are added to the solution archive at a rate determined by a user-
specified criterion. New solutions are initialized using information from a subset of the
solutions in the archive (usually the best solution). The rule used to bias the initialization
of new solutions is the same as in IPSO (see Eq. 3).

IACOR differs from the original ACOR algorithm in the way the solution archive is
updated. In IACOR, once a guiding solution is selected, and a new one is generated (in
exactly the same way as in ACOR), they are compared. If the newly generated solution
is better than the guiding solution, it replaces it in the archive. In contrast, in ACOR

all solutions, new and old, compete at the same time for a slot in the solution archive.
Another difference is the mechanism for selecting the guiding solution in the archive. In
IACOR, the best solution in the archive is used as guiding solution with probability p.
With a probability 1− p, all the solutions in the archive are used to generate new solu-
tions. Finally, IACOR is restarted (keeping the best-so-far solution) if the best solution
is improved less than a certain threshold for a number of consecutive iterations.

As in the PSO case, the quality of the solutions found with IACOR typically improve
if a local search method is used. In our experiments, we measured the performance of
IACOR-LS with Powell’s conjugate directions set [32] and Lin-Yu Tseng’s mtsls1 [36]
methods as local search procedures.

Results. To benchmark IACOR-LS, colleagues and I followed the protocol proposed
by Lozano et al. for a special issue on large-scale optimization in the Soft Computing
Journal [22]. We compared the results obtained by IACOR-LS with those obtained with
IPSOLS (the version described in [25]) and other 15 algorithms. The results are shown
in Fig. 2.

IACOR-LS using mtsls1 as a local search is among the best performing algorithms.
In at least eight benchmark functions, IACOR-mtsls1 found an average solution quality
at least equal to 10−14. Some of these functions are the well-known Rosenbrock and
Rastrigin functions. These results are thus remarkable considering the fact that these
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Fig. 2. Comparison of IACOR-LS with other algorithms: Distribution of average values (over 25
runs) obtained across 19 functions in 100 dimensions after up to 500,000 function evaluations.
Values at or below the threshold 10−14 are considered “zero” for numerical reasons. DE [34],
G-CMA-ES [1], and CHC [8] were proposed by Lozano et al. [22] as reference algorithms. The
benchmark functions used are described in [15].

functions cannot usually be solved to such a precision level. An interesting result of
this comparison comes from the fact that G-CMA-ES [1], which many still consider a
state-of-the-art optimization algorithm, is among the worst performing algorithm. This
result does not mean that G-CMA-ES is not a good algorithm, but that it does not scale
well with the problem’s size. Therefore, for large-scale problems, IACOR-mtsls1 can
be considered a representative algorithm of the state of the art.

4.3 Case Study 3: Artificial Bee Colony Optimization

The Basic Algorithm. The design of the artificial bee colony (ABC) algorithm [17] is
inspired by the foraging behavior of honeybee swarms, in particular, the recruitment of
honeybees to good food sources. The first step of this algorithm is to randomly place a
number SN of candidate solutions, called food sources, in the problem’s search space.
The algorithm’s goal is to discover better food sources (improve the quality of candidate
solutions). This is done as follows: First, simple agents called employed bees select
uniformly at random a food source and explore another location using the following
rule:

vi,j = xi,j + U(−1, 1)(xi,j − xk,j), i �= k , (7)

where i, k ∈ {1, 2, . . . , SN}, j ∈ {1, 2, . . . , D}, xij and xkj are the position of the
reference food source i and a randomly selected food source k in dimension j, respec-
tively. The better food source between the new and the reference food sources is kept
by the algorithm. The next step is performed by another kind of agent called onlooker
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bee, which looks for better food sources around other food sources based on their qual-
ity. This is done by first selecting a reference food source with a probability based on
its quality so that better food sources are more attractive. This step is responsible for
the intensification behavior of the algorithm since information about good solutions is
exploited. The third step is performed by so-called scout bees. In this step, a number
of food sources that have not been improved for a predetermined number of iterations
(controlled by a parameter limit), are detected and abandoned. Then, scout bees search
for a new food source randomly in the whole search space.

Integration with ISL. IABC and IABC-LS were proposed in [2]. From these two al-
gorithms, IABC-LS is the better performing. In ABC-LS, the number of food sources
increases over time according to a predefined schedule. Initially, only a few sources are
used. New food sources are placed using Eq. 3. Scout bees in IABC-LS use a similar
rule when exploring the search space. This rule is

x′
new,j = xbest,j +Rfactor(xbest,j − xnew,j) , (8)

where Rfactor is a parameter that controls how close to the best-so-far food source the
new food source will be. IABC-LS also differs from the original ABC algorithm in the
way employed bees select the food source around which they explore. In IABC-LS,
employed bees search around the best food source instead of around a randomly chosen
one in order to enhance the search intensification. IABC-LS is a hybrid algorithm that
calls a local search procedure at each iteration. The best-so-far food source location
is usually used as the initial solution from which the local search is called. The result
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Fig. 3. Comparison of IABC-LS with other algorithms: Distribution of average values (over 25
runs) obtained across 19 functions in 100 dimensions after up to 500,000 function evaluations.
Values at or below the threshold 10−14 are considered “zero” for numerical reasons. DE [34],
G-CMA-ES [1], and CHC [8] were proposed by Lozano et al. [22] as reference algorithms. The
benchmark functions used are described in [15].
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of the local search replaces the best-so-far solution if there is an improvement on the
initial solution. To fight stagnation, the local search procedure may be applied from a
randomly chosen solution if the best-so-far solution cannot be improved any further.

Results. To measure the performance of IABC-LS, the same protocol used to bench-
mark IACOR-LS was used. The results are shown in Fig. 3. IABC-LS using Powell’s
conjugate directions set method as the local search component exhibits practically the
same performance as IPSO-LS with the same local search. IABC-LS with mtsls1 as the
local search method does not perform as well. These results together with the results
obtained with IACOR-LS, suggest that the observed performance does not depend only
on the local search method used, but on the interaction between the the incremental
algorithm and the local search used. In any case, the instantiation of the ISL framework
in the context of ABC algorithms also improves the performance of the original algo-
rithm. ISL transformed an algorithm not known for being state of the art (ABC) into a
highly competitive algorithm.

5 Conclusions

Engineered swarm intelligence systems are composed of agents that interact with one
another and with their environment in order to accomplish a certain task. Usually, these
systems are composed of agents that use the same behavioral rules; therefore, these
rules must allow agents to engage in positive interactions (those that help the system
accomplish the assigned task) and avoid negative interactions (those that block or hin-
der the agents’ task-performing behavior). Typically, it is impossible to predict when
any two agents will interact or whether they will do so positively. As a consequence,
designers often complexify the behavioral rules of the agents, or the agents’ charac-
teristics. Both of these strategies limit the systems’ scalability potential and make the
design task more challenging.

The incremental social learning (ISL) framework was proposed to reduce the effects
of negative interactions in swarm intelligence systems without requiring the complexifi-
cation of the agents’ behavioral rules or characteristics. Three case studies in the context
of optimization were carried out in order to assess the effectiveness of the ISL frame-
work. The three algorithms that served this purpose were particle swarm optimization,
ant colony optimization for continuous domains ACOR, and artificial bee colony opti-
mization. In each of these cases, the ISL framework improved the performance of the
underlying algorithms, a sign of the reduced effect of negative interactions. The instan-
tiation of the ISL framework with ACOR resulted in a new state-of-the-art optimization
algorithm for problems whose dimensionality makes them unsuitable to be dealt with
other high performance algorithms such as G-CMA-ES.

Acknowledgements. I thank Agostinho Rosa and Joaquim Filipe for inviting me as
a keynote speaker to the International Joint Conference on Computational Intelligence
(IJCCI–2011), held on October 24–26, 2011 in Paris, France. I carried out the work
reported in this paper in collaboration with Tianjun Liao, Doğan Aydın, Ken van den
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versité libre de Bruxelles in Brussels, Belgium.



44 M.A. Montes de Oca

References

1. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing population size.
In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2005), pp. 1769–
1776. IEEE Press, Piscataway (2005)

2. Aydın, D., Liao, T., Montes de Oca, M.A., Stützle, T.: Improving performance via population
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23. Matarić, M.J.: Learning social behavior. Robotics and Autonomous Systems 20(2-4), 191–
204 (1997)

24. Montes de Oca, M.A.: Incremental social learning in swarm intelligence systems. Ph.D. the-
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