
1120 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 5, OCTOBER 2009

Frankenstein’s PSO: A Composite Particle Swarm
Optimization Algorithm

Marco A. Montes de Oca, Thomas Stützle, Mauro Birattari, Member, IEEE, and Marco Dorigo, Fellow, IEEE

Abstract— During the last decade, many variants of the orig-
inal particle swarm optimization (PSO) algorithm have been
proposed. In many cases, the difference between two variants can
be seen as an algorithmic component being present in one variant
but not in the other. In the first part of the paper, we present
the results and insights obtained from a detailed empirical
study of several PSO variants from a component difference
point of view. In the second part of the paper, we propose
a new PSO algorithm that combines a number of algorithmic
components that showed distinct advantages in the experimental
study concerning optimization speed and reliability. We call this
composite algorithm Frankenstein’s PSO in an analogy to the
popular character of Mary Shelley’s novel. Frankenstein’s PSO
performance evaluation shows that by integrating components in
novel ways effective optimizers can be designed.

Index Terms— Continuous optimization, experimental analysis,
integration of algorithmic components, particle swarm optimiza-
tion (PSO), run-time distributions, swarm intelligence.

I. INTRODUCTION

S INCE PARTICLE swarm optimization (PSO) was intro-
duced [1], many modifications to the original algorithm

have been proposed (for reviews see [2]–[4]). In many cases,
the modifications can be seen as algorithmic components that
provide an improved performance. These algorithmic compo-
nents range from added constants in the particles’ velocity-
update rule [5] to stand-alone algorithms that are used as
components of hybrid PSO algorithms [6].

In this paper, we first present the results of an experimental
study of various PSO algorithms. Our comparison focuses on
the differences between mechanisms for updating a particle’s
velocity, although other factors such as the selection of
the population topology, the number of particles, and the
strategies for updating at run time various parameters that
influence performance are also considered. The comparison
of PSO variants is performed with their most commonly

Manuscript received March 21, 2007; revised November 5, 2007, July 29,
2008, January 22, 2009, and April 2, 2009; accepted April 9, 2009. Current
version published September 30, 2009. The work described in this paper was
supported in part by the ANTS and by the META-X projects, two Actions
de Recherche Concertée funded by the Scientific Research Directorate of the
French Community of Belgium. The work of M. A. Montes de Oca was
supported by the Programme Alßan, the European Union Programme of High
Level Scholarships for Latin America, under Scholarship E05D054889MX.
The work of T. Stützle, M. Birattari, and M. Dorigo was supported by the fund
for scientific research, F.R.S-FNRS, of the French Community of Belgium.

The authors are with the Institut de Recherches Interdisciplinaires et de
Développements en Intelligence Artificielle, Université Libre de Bruxelles,
1050 Brussels, Belgium (e-mail: mmontes@ulb.ac.be; stuetzle@ulb.ac.be;
mbiro@ulb.ac.be; mdorigo@ulb.ac.be).

Digital Object Identifier 10.1109/TEVC.2009.2021465

used parameter settings (i.e., those commonly found in the
literature). The experimental setup and the choice of the PSO
variants allow the identification of performance differences
that can be ascribed to specific algorithmic components
and their interactions and, hence, contribute to an improved
understanding of the PSO approach.

In the second part of the paper, we design and evaluate
a new composite PSO algorithm called Frankenstein’s PSO,
which combines algorithmic components that we have identi-
fied as contributing positively to either convergence speed or
optimization reliability of PSO algorithms. The final compar-
ison of Frankenstein’s PSO with the PSO variants studied in
the first part of the paper shows that, by integrating already
existing components in novel ways, effective optimizers can
be designed.

From a wider perspective, this paper adds evidence that a
careful experimental study of algorithm components and their
interactions can be a crucial step toward a more directed design
of new high-performing composite (or hybrid) algorithms.

II. PARTICLE SWARM OPTIMIZATION ALGORITHMS

To optimize a d-dimensional continuous objective function
f : R

d → R, a population of particles P = {p1, . . . , pn}
(called swarm) is randomly initialized in the solution space.
The objective function determines the quality of the solution
represented by a particle’s position. (Without loss of gen-
erality, we restrict the following discussion to minimization
problems.)

At any time step t , a particle pi has an associated position
vector x t

i and a velocity vector v t
i . A vector pb t

i (known as
personal best) stores the best position the particle has ever
visited. Particle pi is said to have a topological neighborhood
Ni ⊆ P of particles. The best personal best vector in a
particle’s neighborhood (called local best) is a vector lb t

i such
that f (lb t

i) ≤ f (pb t
j) ∀p j ∈ Ni .

PSO algorithms update the particles’ velocities and posi-
tions iteratively until a stopping criterion is met. The basic
velocity- and position-update rules are

v t+1
i = v t

i + ϕ1U t
1(pb t

i − x t
i) + ϕ2U t

2(lb
t
i − x t

i) (1)

and
x t+1

i = x t
i + v t+1

i (2)

where ϕ1 and ϕ2 are two parameters called acceleration coef-
ficients, U t

1 and U t
2 are two d × d diagonal matrices with in-

diagonal elements distributed in the interval [0, 1) uniformly
at random. (These matrices are generated at every iteration.)

1089-778X/$26.00 © 2009 IEEE

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on September 30, 2009 at 08:25 from IEEE Xplore. Restrictions apply.

MONTES DE OCA et al.: FRANKENSTEIN’S PSO: A COMPOSITE PARTICLE SWARM OPTIMIZATION ALGORITHM 1121

A maximum velocity parameter Vmax prevents velocities from
growing to extremely large values [7], [8].

In the following paragraphs, we describe the variants that
were selected to be part of our study. For practical reasons,
many variants had to be left out; however, the selection
allows the study of a number of different PSO algorithmic
components including those that, for us, are among the most
influential or promising ones.

A. Constricted Particle Swarm Optimizer

Clerc and Kennedy [5] added a constriction factor to the
particles’ velocity-update rule to avoid the unlimited growth
of the particles’ velocity. Equation (1) is modified to

v t+1
i = χ

(
v t

i + ϕ1U t
1(pb t

i − x t
i) + ϕ2U t

2(lb
t
i − x t

i)
)

(3)

with χ = 2/|2 − ϕ − √
ϕ2 − 4ϕ| where χ is the constriction

factor, ϕ = ∑
i ϕi , and ϕ > 4. Usually, ϕ1 and ϕ2 are set to

2.05, giving as a result χ equal to 0.729 [8], [9]. This variant
will be referred to as constricted PSO in the rest of the paper.

B. Time-Varying Inertia Weight Particle Swarm Optimizers

Shi and Eberhart [10], [11] noticed that the first term of the
right-hand side of (1) plays the role of a particle’s “inertia”
and they introduced the idea of an inertia weight. The velocity-
update rule was modified to

v t+1
i = w t v t

i + ϕ1U t
1(pb t

i − x t
i) + ϕ2U t

2(lb
t
i − x t

i) (4)

where w t is the time-dependent inertia weight. Shi and
Eberhart proposed to set the inertia weight according to a
time-decreasing function so as to have an algorithm that
initially explores the search space and only later focuses on
the most promising regions. Experimental results showed that
this approach is effective [7], [10], [11]. The function used to
schedule the inertia weight is defined as

w t = wtmax − t

wtmax
(wmax − wmin) + wmin (5)

where wtmax marks the time at which w t = wmin; wmax
and wmin are the maximum and minimum values the inertia
weight can take, respectively. Normally, wtmax coincides with
the maximum time allocated for the optimization process. We
identify this variant as decreasing-IW PSO. The constricted
PSO is a special case of this variant but with a constant inertia
weight. We treat them as different variants because of their
different behavior and for historical reasons.

Zheng et al. [12], [13] experimented with a time-increasing
inertia weight function, obtaining, in some cases, better results
than the decreasing-IW variant. Concerning the schedule of
the inertia weight, Zheng et al. also used (5), except that the
values of wmax and wmin were interchanged. This variant is
referred to as increasing-IW PSO.

Eberhart and Shi [14] proposed a variant in which an inertia
weight vector is randomly generated according to a uniform
distribution in the range [0.5, 1.0) with a different inertia
weight for each dimension. This range was inspired by Clerc
and Kennedy’s constriction factor because the expected value

of the inertia weight in this case is 0.75 ≈ 0.729. Accordingly,
in this stochastic-IW PSO algorithm, acceleration coefficients
are set to the product of χ · ϕi with i ∈ {1, 2}.
C. Fully Informed Particle Swarm Optimizer

Mendes et al. [15] proposed the fully informed particle
swarm (FIPS), in which a particle uses information from all its
topological neighbors. Clerc and Kennedy’s constriction factor
is also adopted in FIPS; however, the value ϕ (i.e., the sum of
the acceleration coefficients) is equally distributed among all
the neighbors of a particle.

For a given particle pi , ϕ is decomposed as ϕk =
ϕ/|Ni | , ∀pk ∈ Ni . The velocity-update equation becomes

v t+1
i = χ

⎡
⎣v t

i +
∑

pk∈Ni

ϕkU t
k (pb t

k − x t
i)

⎤
⎦ . (6)

D. Self-Organizing Hierarchical Particle Swarm Optimizer
With Time-varying Acceleration Coefficients

Ratnaweera et al. [16] proposed the self-organizing hierar-
chical particle swarm optimizer with time-varying acceleration
coefficients (HPSOTVAC), in which the inertia term in the
velocity-update rule is eliminated. Additionally, if any com-
ponent of a particle’s velocity vector becomes zero (or very
close to zero), it is reinitialized to a value proportional to
Vmax, which is the maximum velocity allowed. This gives
the algorithm a local search behavior that is amplified by
linearly adapting the value of the acceleration coefficients
ϕ1 and ϕ2. The coefficient ϕ1 is decreased from 2.5 to
0.5, and the coefficient ϕ2 is increased from 0.5 to 2.5.
In HPSOTVAC, the maximum velocity is linearly decreased
during a run so as to reach 1/10 of its value at the end.
A low reinitialization velocity near the end of the run allows
particles to move slowly near the best region they have found.
The resulting PSO variant is a kind of local search algo-
rithm with occasional magnitude-decreasing unidimensional
restarts.

E. Adaptive Hierarchical Particle Swarm Optimizer

The adaptive hierarchical PSO (AHPSO) [17] modifies the
neighborhood topology at run time. It uses a tree-like topology
structure in which particles with better objective function
evaluations are located in the upper nodes of the tree. At
each iteration, a child particle updates its velocity considering
its own previous best performance and the previous best
performance of its parent. Before the velocity-update process
takes place, the previous best fitness value of any particle is
compared with that of its parent. If it is better, child and
parent swap their positions in the hierarchy. Additionally,
AHPSO adapts the branching degree of the tree while solving a
problem to balance the exploration-exploitation behavior of the
algorithm: a hierarchy with a low branching degree has a more
exploratory behavior than a hierarchy with a high branching
degree. In AHPSO, the branching degree is decreased by kadapt
degrees (one at a time) until a certain minimum degree dmin
is reached. This process takes place every fadapt number of
iterations. For more details, see [17].

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on September 30, 2009 at 08:25 from IEEE Xplore. Restrictions apply.

1122 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 5, OCTOBER 2009

III. EXPERIMENTAL SETUP

The complete experimental design examines five factors.

1) PSO algorithm. This factor considers the differences
between PSO variants. Specifically, we focused on
1) different strategies for updating inertia weights, 2) the
use of static and time-varying population topologies, and
3) different strategies for updating a particle’s velocity.

2) Problem. We selected some of the most commonly
used benchmark functions in experimental evolutionary
computation. Since most of these functions have their
global optimum located at the origin, we shifted it to
avoid any possible search bias as suggested by Liang
et al. [18]. In most cases, we used the shift values
proposed in the set of benchmark functions used for
the special session on real parameter optimization of
the IEEE CEC 2005 [19]. Table I lists the benchmark
functions used in our study. In all cases, we used
their 30-dimensional versions. [Their definitions can be
found in this paper’s supplementary information web
page [20].1] All algorithms were run 100 times on each
problem.

3) Population topology. We use three of the most com-
monly used population topologies: The fully connected
topology, in which every particle is a neighbor of any
other particle in the swarm; the von Neumann topology,
in which each particle is a neighbor of four other
particles; and the ring topology, in which each particle
is a neighbor of another two particles. In our setup, all
particles are also neighbors to themselves. These three
topologies are tested with all variants except in the case
of AHPSO which uses a time-varying topology. The
selected topologies provide different degrees of connec-
tivity between particles. The goal is to favor exploration
in different degrees: The less connected is a topology,
the more it delays the propagation of the best-so-far
solution. Thus, low connected topologies result in more
exploratory behavior than highly connected ones [21].
Although recent research suggests that random topolo-
gies can be competitive to predefined ones [22], they
are not included in our setup in order not to have an
unmanageable number of free variables.

4) Population size. We considered three population sizes:
20, 40, and 60 particles. With low connected topologies
and large populations, the propagation of information
is slower and thus it is expected that a more “paral-
lel” search takes place. The configurations of the von
Neumann topologies for 20, 40, and 60 particles were,
respectively, 5 × 4, 5 × 8, and 6 × 10 particles. The
population is initialized uniformly at random over the
ranges specified in Table I. Since the problems’ optima
were shifted, the initialization range is asymmetric with
respect to them.

5) Maximum number of function evaluations. This factor
determined the stopping criterion. The limit was set to

1At this same address the reader can find all the supporting supplementary
information (definitions, tables, and graphs) that, for the sake of conciseness,
we do not present here.

TABLE I

BENCHMARK PROBLEMS

Function name Search range Modality

Ackley [−32.0, 32.0]n Multimodal

Griewank [−600.0, 600.0]n Multimodal

Rastrigin [−5.12, 5.12]n Multimodal

Salomon [−100.0, 100.0]n Multimodal

Schwefel (sine root) [−512.0, 512.0]n Multimodal

Step [−5.12, 5.12]n Multimodal

Rosenbrock [−30.0, 30.0]n Unimodal

Sphere [−100.0, 100.0]n Unimodal

106 function evaluations. However, data were collected
during a run to determine relative performances for
shorter runs. The goal was to find variants that are well
suited for different application scenarios. The first two
cases (103 and 104 function evaluations) model scenarios
in which there are scarce resources and the best possible
solution is sought given a restrictive time limit. The other
two cases (105 and 106 function evaluations) model
scenarios in which the main concern is to find high
quality solutions without paying too much attention to
the time it takes to find them.

In our experimental setup, each algorithm was run with the
same parameter settings across all benchmark problems. When
possible, we use the most commonly used parameter settings
found in the literature. These parameter settings are listed in
Table II.

In our experimental analysis, we examined the algorithms’
performance at different levels of aggregation. At a detailed
level, we analyze the algorithms’ qualified run-length distribu-
tions (RLDs, for short). At a more aggregate level, we use the
median solution quality reached by the algorithms at different
stopping criteria. The most important elements of the RLD
methodology are explained below (for a detailed exposition,
see [23]).

The number of function evaluations a stochastic optimiza-
tion algorithm needs to find a solution of a certain quality on
a given problem can be modeled as a random variable. Its
associated cumulative probability distribution RLq (l) is the
algorithm’s RLD, defined as

RLq (l) = P(Lq ≤ l) (7)

where Lq is the random variable representing the number of
function evaluations needed to find a solution of quality q ,
and P(Lq ≤ l) is the probability that Lq takes a value less
than or equal to l function evaluations. Theoretical RLDs can
be estimated empirically using multiple independent runs of
an algorithm.

An empirical RLD provides a graphical view of the devel-
opment of the probability of finding a solution of a certain
quality as a function of time. When this probability does not
increase, or it does but very slowly, the algorithm is said to
stagnate. In this paper we use the word stagnation to refer to
the phenomenon of slow or no increment of the probability of
finding a solution of a specific quality. Note that no reference

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on September 30, 2009 at 08:25 from IEEE Xplore. Restrictions apply.

MONTES DE OCA et al.: FRANKENSTEIN’S PSO: A COMPOSITE PARTICLE SWARM OPTIMIZATION ALGORITHM 1123

TABLE II

PARAMETER SETTINGS

Algorithm Settings

Constricted Acceleration coefficients ϕ1 = ϕ2 = 2.05. Constriction
factor χ = 0.729. Maximum velocity Vmax = ±Xmax,
where Xmax is the maximum of the search range.

Decreasing-IW Acceleration coefficients ϕ1 = ϕ2 = 2.0. Linearly-
decreasing inertia weight from 0.9 to 0.4. The final
value is reached at the end of the run. Maximum
velocity Vmax = ±Xmax.

Increasing-IW Acceleration coefficients ϕ1 = ϕ2 = 2.0. Linearly-
increasing inertia weight from 0.4 to 0.9. The final
value is reached at the end of the run. Maximum
velocity Vmax = ±Xmax.

Stochastic-IW Acceleration coefficients ϕ1 = ϕ2 = 1.494. Uni-
formly distributed random inertia weight in the range
[0.5, 1.0). Maximum velocity Vmax = ±Xmax.

FIPS Acceleration parameter ϕ = 4.1. Constriction factor
χ = 0.729. Maximum velocity Vmax = ±Xmax.

HPSOTVAC Acceleration coefficient ϕ1 linearly decreased from 2.5
to 0.5 and coefficient ϕ2 linearly increased from 0.5 to
2.5. Linearly decreased reinitialization velocity from
Vmax to 0.1·Vmax. Maximum velocity Vmax = ±Xmax.

AHPSO Acceleration coefficients ϕ1 = ϕ2 = 2.05. Constriction
factor χ = 0.729. Initial branching factor is set to 20,
dmin, fadapt , and kadapt were set to 2, 1000 · m, and
3, respectively, where m is the number of particles.

to the state of the optimization algorithm is implied (e.g., in
active search or otherwise).

In stagnation cases, the probability of finding a solution of
a certain quality may be increased by restarting the algorithm
at fixed cut-off times without carrying over information from
the previous runs [23]. These independent restarts entail re-
running the algorithm using a different random seed. However,
the output of the algorithm with restarts is always the overall
best-so-far solution across all independent runs.

The RLD of the algorithm with periodic restarts will approx-
imate, in the long run, an exponential distribution. However,
independent restarts can be detrimental if an algorithm’s orig-
inal RLD grows faster than an exponential distribution. Given
an algorithm’s RLD, it is possible to estimate the number of
function evaluations needed for finding a solution of a required
quality with a probability greater than or equal to z supposing
an optimal restart policy. This estimation is sometimes called
computational effort [24] and it is defined as

effort = min
l

{
l · ln(1 − z)

ln(1 − RLq (l))

}
. (8)

We use this measure to account for the possibility of restarting
the compared algorithms with optimal restart policies.

Another measure that will be used in the description of
the results is the first hitting time Hq for a specific solution
quality q . Hq is an estimation of the minimum number of
evaluations that an algorithm needs for finding a solution of a
quality level q . It is defined as

Hq = min{l ≥ 0; RLq(l) > 0} . (9)

IV. PERFORMANCE COMPARISON OF PSO ALGORITHMS

The comparison is carried out in three phases. In the first
one, a problem-dependent run-time behavior comparison based
on RLDs is performed (a preliminary series of results is
published in [25]). In the second phase, data from all the
problems of our benchmark suite are aggregated and analyzed.
In the third phase, we study the effects of using different
inertia weight schedules on the performance of the concerned
variants. Results that are valid for all the tested problems are
explicitly summarized.

A. Results: Run-Length Distributions

The graphs presented in this section show a curve for
each of the compared algorithms corresponding to a particular
combination of a population topology and a population size.
Since AHPSO does not use a fixed topology, its RLDs are the
same across topologies and its results can therefore be used
as a reference across plots for a same problem. The RLDs
we present here were obtained using swarms of 20 and 60
particles.

Because of space constraints, we present only one represen-
tative example of the results we obtained. Fig. 1 shows some
of the algorithms’ RLDs when solving Griewank’s function.
These plots are given with respect to a bound of 0.001% above
the optimum value, corresponding to an absolute error of
0.0018. The smallest first hitting times for the same algorithm
across different population size and topology settings are
obtained with a population size of 20 and the fully connected
topology. Conversely, the largest ones are obtained with a
population size of 60 and the ring topology. With 20 particles,
the right tails of the RLDs show a slowly increasing or a non-
increasing slope. This means that, for the Griewank’s function,
all the PSO variants included in our study, when using 20
particles and the parameter settings shown in Table II, have
a strong stagnation tendency. In fact, no variant is capable
of finding a solution of the required quality with probability
1.0 with this population size. With 60 particles and a ring
topology, only FIPS finds the required solution quality with
probability 1.0, while the constricted PSO and HPSOTVAC
reach a solution of the required quality with probability 0.99.

Result 1: Depending on the problem and required solution
quality, PSO algorithms exhibit a stagnation tendency with
different degrees of severity. This tendency is smaller when
using large population sizes and/or low connected topologies
than it is when using small population sizes and/or highly
connected topologies; however, even though the probability of
solving the problem increases, first hitting times are normally
delayed.

An interesting fact is the strong influence of the topology
on the algorithms’ performance. For example, FIPS with a
fully connected topology does not find a single solution of
the required quality; however, with a ring topology, it is
among the fastest algorithms (in terms of first hitting time).
AHPSO seems to profit from a highly connected topology at
the beginning of a run. It is also among the fastest variants
when the rest of the algorithms use a von Neumann or ring

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on September 30, 2009 at 08:25 from IEEE Xplore. Restrictions apply.

1124 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 5, OCTOBER 2009

Constricted
Decreasing−IW
Increasing−IW
Stochastic−IW
FIPS
HPSOTVAC
AHPSO

Pr
ob

ab
ili

ty
 o

f
so

lv
in

g
th

e
pr

ob
le

m

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Function evaluations
104 105 106

(a) 20 particles, fully connected topology

Constricted
Decreasing−IW
Increasing−IW
Stochastic−IW
FIPS
HPSOTVAC
AHPSO

Function evaluations
104 105 106

0.
0

0.
2

0.
4

0.
6

0.
8

Pr
ob

ab
ili

ty
 o

f
so

lv
in

g
th

e
pr

ob
le

m 1.
0

(b) 60 particles, fully connected topology

Constricted
Decreasing−IW
Increasing−IW
Stochastic−IW
FIPS
HPSOTVAC
AHPSO

Pr
ob

ab
ili

ty
 o

f
so

lv
in

g
th

e
pr

ob
le

m

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Function evaluations
104 105 106

(c) 20 particles, von Neumann topology

Constricted
Decreasing−IW
Increasing−IW
Stochastic−IW
FIPS
HPSOTVAC
AHPSO

Function evaluations
104 105 106

0.
0

0.
2

0.
4

0.
6

0.
8

Pr
ob

ab
ili

ty
 o

f
so

lv
in

g
th

e
pr

ob
le

m 1.
0

(d) 60 particles, von Neumann topology

Function evaluations

Pr
ob

ab
ili

ty
 o

f
so

lv
in

g
th

e
pr

ob
le

m

104 105 106

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Constricted
Decreasing−IW
Increasing−IW
Stochastic−IW
FIPS
HPSOTVAC
AHPSO

(e) 20 particles, ring topology

Function evaluations
104 105 106

0.
0

0.
2

0.
4

0.
6

0.
8

Constricted
Decreasing−IW
Increasing−IW
Stochastic−IW
FIPS
HPSOTVAC
AHPSO

Pr
ob

ab
ili

ty
 o

f
so

lv
in

g
th

e
pr

ob
le

m 1.
0

(f) 60 particles, ring topology

Fig. 1. RLDs on Griewank’s function. The solution quality bound is set to 0.001% above the global optimum (equivalent to an absolute error of 0.0018).
Plots (a), (c), and (e) in the left column show the RLDs obtained with 20 particles. Plots (b), (d), and (f) in the right column show the RLDs obtained with
60 particles. The effect of using different population topologies can be seen by comparing plots in different rows. The effect of using a different number of
particles can be seen by comparing columns.

topology. However, it is unable to solve the problem with a
high probability.

Result 2: PSO algorithms are sensitive to changes in the
population topology in different degrees. Among those tested,
FIPS is the most sensitive variant to a change of this nature.
On the contrary, HPSOTVAC and the decreasing inertia weight
PSO algorithm are quite stable to topology changes.

As a best case analysis, we now consider the possibility
of restarting the algorithms with an optimal cut-off period. In
Table III, we show the best configuration of each algorithm
to solve Griewank’s problem (at 0.001% above the global
optimum) with probability 0.99. The best performing configu-
rations of FIPS and the constricted PSO, both with 60 particles
and the ring topology, do not benefit from restarts under
these conditions, and they are the two best variants for the
considered goal. In this case, the joint effect of choosing the
right algorithm, with an appropriate population size and with
the right topology, cannot be outperformed by configurations

TABLE III

BEST PERFORMING CONFIGURATIONS OF EACH ALGORITHM

USING INDEPENDENT RESTARTS ON GRIEWANK’S FUNCTION1, 2

Algorithm Pop. size Topology Cut-off Effort Restarts

FIPS 60 Ring 46440 46440 0

Constricted 60 Ring 71880 71880 0

Sto-IW 40 Ring 52160 131075 2

Inc-IW 20 Ring 24040 138644 5

HPSOTVAC 40 Ring 132080 155482 1

AHPSO 40 Dynamic 17360 207295 11

Dec-IW 60 Ring 663000 1326000 1
1 Probabilities taken from the RLDs.
2 Cut-off and effort measured in function evaluations. The effort is

computed using (8).

that benefit the most from restarts (i.e., those that stagnate).
Similar analyses were performed on all the problems of our
benchmark suite but different results were obtained in each
case.

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on September 30, 2009 at 08:25 from IEEE Xplore. Restrictions apply.

MONTES DE OCA et al.: FRANKENSTEIN’S PSO: A COMPOSITE PARTICLE SWARM OPTIMIZATION ALGORITHM 1125

TABLE IV

DISTRIBUTION OF APPEARANCES OF DIFFERENT PSO ALGORITHMS IN THE TOP-THREE GROUP1

FES Ackley Griewank Rastrigin Salomon Schwefel Step Rosenbrock Sphere

103
FIPS (F, vN) FIPS (F, vN) FIPS (F, vN) FIPS (F, vN) Inc-IW (F, vN, R) FIPS (F, vN) AHPSO FIPS (F, vN)

Inc-IW (F) Inc-IW (F) Inc-IW (F) HPSOTVAC Inc-IW (F) Constricted (F) Inc-IW (F)

Sto-IW (F)

104

FIPS (vN, R) Constricted (F) AHPSO Constricted (F) AHPSO AHPSO AHPSO AHPSO

Inc-IW (F) FIPS (vN) Constricted (F) Inc-IW (F) Inc-IW (F) Constricted (F) Constricted (F) Constricted (F)

Inc-IW (F) Inc-IW (F) Sto-IW (F) Sto-IW (F) Inc-IW (F) Sto-IW (F) Inc-IW (F)

Sto-IW (F)

105

Constricted (vN) Constricted (vN, R) FIPS (vN) Constricted (vN, R) HPSOTVAC (F, vN, R) Constricted (vN) AHPSO AHPSO

FIPS (R) FIPS (R) Inc-IW (vN) FIPS (R) Inc-IW (F) Constricted (F) Constricted (F, vN, R)

Inc-IW (F) Inc-IW (vN, R) Sto-IW (vN) Inc-IW (F, vN) Sto-IW (F) Sto-IW (F) FIPS (R)

Sto-IW (vN, R) Sto-IW (F, vN, R) Inc-IW (F, vN, R)

Sto-IW (F, vN, R)

106

Constricted (vN, R) Constricted (vN, R) HPSOTVAC Constricted (vN, R) Dec-IW (vN) Constricted (vN, R) AHPSO AHPSO

Dec-IW (F, vN, R) Dec-IW (vN, R) (F, vN, R) Dec-IW (F, vN, R) FIPS (R) Dec-IW (F, vN, R) Constricted (F) Constricted (F, vN, R)

FIPS (R) FIPS (R) FIPS (R) HPSOTVAC (R) FIPS (R) Sto-IW (F) Dec-IW (F, vN, R)

Inc-IW (vN, R) HPSOTVAC (F, vN, R) HPSOTVAC (F, vN, R) HPSOTVAC (F, vN, R) FIPS (R)

Sto-IW (vN, R) Inc-IW (vN, R) Inc-IW (vN, R) Inc-IW (F, vN, R) HPSOTVAC (vN)

Sto-IW (vN, R) Sto-IW (vN, R) Sto-IW (F, vN, R) Inc-IW (F, vN, R)

Sto-IW (F, vN, R)

1 F, vN, and R stand for fully connected, von Neumann, and ring, respectively. FES stands for function evaluations.

Result 3: Independent restarts can improve the performance
of various PSO algorithms. In some cases, configurations
that favor an exploitative behavior can outperform those that
favor an exploratory one if optimal restart policies are used.
However, the optimal restart policy is algorithm- and problem-
dependent and therefore cannot be defined a priori.

B. Results: Aggregated Data

The analysis that follows is based on the median solution
quality achieved by an algorithm after some specific number
of function evaluations. This analysis considers only the
40-particle case, which represents the intermediate case in
terms of population size in our experimental setup. For each
problem, we ranked 19 configurations (6 PSO algorithms×3
topologies + AHPSO) and selected only those that were
ranked in the first three places (what we call the top-three
group). For this analysis, we assume that the algorithms are
neither restarted nor fine-tuned for any specific problem.

Table IV shows the distribution of appearances of the com-
pared PSO algorithms in the top-three group. The table shows
configurations ranked among the three best algorithms for
different numbers of function evaluations (FES). The topology
used by a particular configuration is shown in parenthesis.
If two or more configurations found solutions with the same
quality level (differences smaller than 10−15 are not consid-
ered) and they were among the three best solution qualities,
these configurations were considered to be part of the top-three
group. In fact, we observed that, as the number of function
evaluations increases, more and more algorithms appear in
the top-three group. This indicates that the difference in the
solution quality achieved by different algorithms decreases and
that many algorithms find solutions of the same quality level.

Table V shows the algorithms that most often appear in the
top-three group in Table IV for different termination criteria.

TABLE V

BEST PSO VARIANTS FOR DIFFERENT TERMINATION CRITERIA

Budget (in FES) Algorithm (Topology) � Multi/unimodal

103 Inc-IW(F), FIPS(F, vN) 6 5/1

104 Inc-IW(F) 7 6/1

105 Constricted(vN) 5 4/1

106 Dec-IW(vN), FIPS(R) 6 5/1

The column labeled “�” shows the total number of times
each algorithm appeared in the top-three group. The rightmost
column shows the distribution of appearances in the top-three
group between multi- and unimodal functions.

Note that the connectivity of the topology used by the best
ranked variants decreases as the maximum number of function
evaluations increases. Note also that FIPS is among the best
ranked variants: for the shortest runs, using a fully connected
or a von Neumann topology and, for the longest runs, using a
ring topology. Even though these results may seem counterin-
tuitive at first inspection, they can be understood by looking
at the convergence behavior of the algorithm when topologies
of different connectivity degree are used. In FIPS, highly
connected topologies induce a strongly convergent behavior
that, depending on the features of the objective function, can
result in a very fast solution improvement during the first
iterations [26]. Indeed, it has been shown that under stagnation,
the moments of the sampling distribution of FIPS become
more and more stable (over time) as the topology connectivity
increases [27]. This means that, in FIPS, the more connected
the population topology, the lower the stochasticity in the
behavior of a particle. By observing the behavior of FIPS over
different run lengths, our results extend those of Mendes [21]
who studied the behavior of FIPS using only a fixed number
of function evaluations as stopping criterion.

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on September 30, 2009 at 08:25 from IEEE Xplore. Restrictions apply.

1126 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 5, OCTOBER 2009

1
2

5
10

20
50

10
0

20
0

106

104

102R
el

at
iv

e
so

lu
tio

n
qu

al
ity

 [
%

]

102 103 104 105 106

0.
0

0.
5

1.
0

Function evaluations

In
er

tia
 w

ei
gh

t

(a) Decreasing inertia weight

106

104

102

102 103 104 105 106

Function evaluations

1
2

5
10

20
50

10
0

20
0

R
el

at
iv

e
so

lu
tio

n
qu

al
ity

 [
%

]

0.
0

0.
5

1.
0

In
er

tia
 w

ei
gh

t

(b) Increasing inertia weight

Fig. 2. Solution quality and inertia weight development over time for different inertia weight schedules on the Rastrigin function. The solution quality
development plots are based on the medians of the algorithms’ RLDs. The first and third quartiles are shown at selected points. These results correspond to
configurations of 20 particles in a fully connected topology. The results obtained with the schedules of 105 and 103 function evaluations (not shown) are
intermediate with respect to the results obtained with the other schedules.

Result 4: When a limited number of function evaluations
are allowed, configurations that favor an exploitative behavior
(i.e., those with highly connected topologies and/or low inertia
weights) obtain the best results. When solution quality is the
most important aspect, algorithms with exploratory properties
are the best performing.

C. Results: Different Inertia Weight Schedules

With very few exceptions (e.g., [28]), the change of the
inertia weight value in the time-decreasing/increasing inertia
weight variants is normally scheduled over the whole op-
timization process. In this section, we present a study on
the effects of using different schedules on both the time-
decreasing and time-increasing inertia weight variants. To do
so, we modified the inertia weight schedule, which is based
on (5), so that whenever the inertia weight reaches its limit
value, it remains there. We experimented with five inertia
weight schedules of wtmax ∈ {102, 103, 104, 105, 106} function
evaluations each. The remaining parameters were set as shown
in Table II.

As an example of the effects of different inertia weight
schedules, consider Fig. 2, which shows the development of
the solution quality over time (using both the time-decreasing
and time-increasing inertia weight variants) for different inertia
weight schedules on the Rastrigin function.

In the case of the time-decreasing inertia weight variant,
slow schedules (wtmax = 105 or 106 function evaluations)
perform poorly during the first phase of the optimization
process; however, they are the ones that are capable of
finding the best quality solutions. On the other hand, fast
schedules (wtmax = 102 or 103 function evaluations) produce
rapid improvement but at the cost of stagnation later in the
optimization process.

With the time-increasing inertia weight variant, slow sched-
ules provide the best performance. Fast schedules make the
time-increasing inertia weight variant strongly stagnant. For
both variants, the severity of the stagnation tendency induced

by different schedules is alleviated by both an increase in the
number of particles and the use of a low connected topology.

Result 5: By varying the inertia weight schedule, it is
possible to control the convergence speed of the time-varying
inertia weight variants. In the case of the time-decreasing
inertia weight variant, faster schedules induce a faster conver-
gence speed, albeit at the cost of increasing the algorithm’s
stagnation tendencies. In the time-increasing inertia weight
variant, slow schedules provide the best performance both in
terms of speed and quality.

D. Summary

The goal of the comparison presented in this section was
to identify algorithmic components that provide good per-
formance under different operating conditions (especially run
lengths). The five main results give insight into which factors
should be taken into account when trying to solve effectively
a problem using a PSO algorithm.

Among other results, we have seen that the stagnation
tendency of PSO algorithms can be alleviated by using a
large population and/or a low connected topology. Another
approach to reduce stagnation in some cases is to use
restarts. However, optimal restart schedules are algorithm
and problem dependent and determining them requires
previous experimentation. We have also seen how different
inertia weight schedules affect the performance of the
time-decreasing/increasing inertia weight variants.

V. FRANKENSTEIN’S PARTICLE SWARM OPTIMIZATION

ALGORITHM

Insights on experimental results ideally guide toward the
definition of new better performing algorithms. In this section,
a composite algorithm called Frankenstein’s PSO is assembled
from algorithmic components that are taken from the PSO
algorithms that we have examined or that are derived from
the analysis of the comparison results.

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on September 30, 2009 at 08:25 from IEEE Xplore. Restrictions apply.

MONTES DE OCA et al.: FRANKENSTEIN’S PSO: A COMPOSITE PARTICLE SWARM OPTIMIZATION ALGORITHM 1127

Algorithm 1 Frankenstein’s PSO algorithm

/* Initialization */
for i = 1 to n do

Create particle pi and add it to the set of particles P
Initialize its vectors xi and vi to random values within the search range
and maximum allowed velocities
Set pbi = xi
Set Ni = P

end for

/* Main Loop */
Set t = 0
Set esteps = 0
repeat

/* Evaluation Loop */
for i = 1 to n do

if f (xi) is better than f (pbi) then
Set pbi = xi

end if
end for
/* Topology Update */
if t > 0 ∧ t <= k ∧ t mod
k/(n − 3)� = 0 then

/* t > 0 ensures that a fully connected topology is used first */
/* t <= k ensures that the topology update process is not called after
iteration k */
/* t mod
k/(n −3)� = 0 ensures the correct scheduling of the topology
update process */
for i = 1 to n − (2 + esteps) do

/* n − (2 + esteps) ensures the arithmetic regression pattern */
if |Ni | > 2 then

/* |Ni | > 2 ensures proper node selection */
Select at random particle pr from Ni such that pr is not adjacent
to pi
Eliminate particle pr from Ni
Eliminate particle pi from Nr

end if
end for
Set esteps = esteps + 1

end if
/* Inertia Weight Update */
if t ≤ wtmax then

Set wt = wtmax−t
wtmax

(wmax − wmin) + wmin
else

Set wt = wmin
end if
/* Velocity and Position Update */
for i = 1 to n do

Generate U t
m ∀pm ∈ Ni

Set ϕm = ϕ/|Ni | ∀pm ∈ Ni
Set v t+1

i = w t v t
i +

∑
pm ∈Ni

ϕk U t
k (pb t

k − x t
i)

Set x t+1
i = x t

i + v t+1
i

end for
Set t = t + 1
Set sol = argmin

pi ∈P
f (pb t

i)

until f (sol) value is good enough or t = tmax

A. Algorithm

Frankenstein’s PSO is composed of three main algorithmic
components, namely, 1) a time-varying population topology
that reduces its connectivity over time, 2) the FIPS mechanism
for updating a particle’s velocity, and 3) a decreasing inertia
weight. These components are taken from AHPSO, FIPS, and
the time-decreasing inertia weight variant, respectively. The
first component is included as a mechanism for improving the
tradeoff between speed and quality associated with topologies
of different connectivity degrees. The second component is
used because the analysis showed that FIPS is the only
algorithm that can outperform the others using topologies

(a) t = 0 (b) t = 4

(c) t = 8 (d) t = 12

Fig. 3. Topology change process. Suppose n = 6 and k = 12. Then, every

12/(6−3)� = 4 iterations we remove some edges from the graph. In 6−3 = 3
steps, the elimination process will be finished. (a) At t = 0 a fully connected
topology is used, (b) At t = 4 the 6 − 2 = 4 edges to be removed are shown
in dashed lines, (c) At t = 8 the 6 − 3 = 3 edges to be removed are shown
in dashed lines, and (d) At t = 12 the remaining 6 − 4 = 2 edges to be
removed are shown in dashed lines. From t = 12 on, the algorithm uses a
ring topology.

of different connectivity degree (see Table V). Finally, the
decreasing inertia weight component is included as a mean to
balance the exploration-exploitation behavior of the algorithm.

The time-varying topology starts as a fully connected one
and, as the optimization process evolves, decreases its connec-
tivity until it ends up being a ring topology. Interestingly, it is
the opposite approach to the one taken by Suganthan [29].
Note, however, that our approach is entirely based on the
results of the empirical analysis presented in the previous
section. Specifically, our choice is based on the fact that a
highly connected topology during the first iterations gives an
algorithm the opportunity to find good quality solutions early
in a run (see Table V and Results 1 and 4 in Section IV). The
topology connectivity is then decreased, so that the risk of
getting trapped somewhere in the search space is reduced and,
hence, exploration is enhanced. Including this component into
the algorithm allows it to achieve good performance across a
wider range of run lengths as it will be shown later. As we said
before, this component is taken from AHPSO. Information
flow in AHPSO is very fast during the first iterations because
the topology connectivity is high. As the optimization process
evolves, its connectivity decreases.

In Frankenstein’s PSO, we do not use a hierarchical topol-
ogy, as it is not clear from our results how it contributes to a
good performance. Instead, the topology is changed as follows.
Suppose we have a particle swarm composed of n particles.
We schedule the change of the topology so that in k iterations
(with k ≥ n), we transform a fully connected topology with
n(n − 1)/2 edges into a ring topology with n edges. The total
number of edges that have to be eliminated is n(n−3)/2. Every

k/(n − 3)� iterations we remove m edges, where m follows
an arithmetic regression pattern of the form n−2, n−3, . . . , 2.
We sweep m nodes removing one edge per node. The edge

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on September 30, 2009 at 08:25 from IEEE Xplore. Restrictions apply.

1128 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 5, OCTOBER 2009

Function evaluations

Pr
ob

ab
ili

ty
 o

f
so

lv
in

g
th

e
pr

ob
le

m

104 105 106

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1n2

2n2

3n2

4n2

(a) 20 particles, 1 × n iterations

Function evaluations

Pr
ob

ab
ili

ty
 o

f
so

lv
in

g
th

e
pr

ob
le

m

104 105 106

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1n2

2n2

3n2

4n2

(b) 60 particles, 1 × n iterations

Function evaluations

Pr
ob

ab
ili

ty
 o

f
so

lv
in

g
th

e
pr

ob
le

m

104 105 106

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1n2

2n2

3n2

4n2

(c) 20 particles, 4 × n iterations

Function evaluations

Pr
ob

ab
ili

ty
 o

f
so

lv
in

g
th

e
pr

ob
le

m

104 105 106

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1n2

2n2

3n2

4n2

(d) 60 particles, 4 × n iterations

Fig. 4. RLDs obtained by Frankenstein’s PSO algorithm on Griewank’s function. The solution quality demanded is 0.001% above the global optimum. Each
graph shows four RLDs that correspond to different inertia weight schedules.

to be removed is chosen uniformly at random from the edges
that do not belong to the exterior ring, which is predefined
(just as it is done when using the normal ring topology). The
transformation from the initially fully connected to the final
ring topology is performed in n − 3 elimination steps. Fig. 3
shows a graphical example of how the process just described
is carried out.

Changes in the population topology must be exploited
by the underlying particles’ velocity-update mechanism. In
Frankenstein’s PSO we included the mechanism used by FIPS.
The reason for this is that we need a component that offers
good performance across different topology connectivities. Ac-
cording to Table V, the only velocity-update mechanism that is
ranked among the best variants when using different topologies
is the one used by FIPS. For short runs, the best performance
of FIPS is obtained with the fully connected topology (the
way Frankenstein’s PSO topology starts); for long runs, FIPS
reaches very high performance with a low connected topology
(the way Frankenstein’s PSO topology ends).

The constriction factor originally used in FIPS is substi-
tuted by a decreasing inertia weight. A decreasing inertia
weight was chosen because it is a parameter that can be
used to control the algorithm’s exploration/exploitation ca-
pabilities. In Section IV-C, we saw that a proper selection
of the inertia weight schedule can dramatically change the
performance of a PSO algorithm. A decreasing inertia weight

would counterbalance the exploratory behavior that the chosen
topology change scheme could induce.

The pseudocode of Frankenstein’s PSO is shown in Algo-
rithm 1. The main loop cycles through the three algorithmic
components: topology update, inertia weight update, and the
particles’ velocity and position updates. The topology update
mechanism is only executed while the algorithm’s current
number of iterations is lower than or equal to a parameter
k, which specifies the topology update schedule. Since it is
guaranteed that the ring topology is reached after iteration k,
there is no need to call this procedure thereafter. In Algo-
rithm 1, a variable esteps is used to ensure that the number
of eliminated edges in the topology follows an arithmetic
regression pattern. Note that the elimination of neighborhood
relations is symmetrical; that is, if particle r is removed from
the neighborhood of particle i , particle i is also removed from
the neighborhood of particle r . The inertia weight is then
updated, and finally, the velocity-update mechanism is applied
in the same way as in FIPS.

B. Parameterization Effects

We studied the impact of using different schedules for
the topology and inertia weight updates on the algorithm’s
performance. The remaining parameters were set as follows:
the maximum velocity Vmax is set to ±Xmax (the maximum
of the search range), the linearly-decreasing inertia weight

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on September 30, 2009 at 08:25 from IEEE Xplore. Restrictions apply.

MONTES DE OCA et al.: FRANKENSTEIN’S PSO: A COMPOSITE PARTICLE SWARM OPTIMIZATION ALGORITHM 1129

 Best

–0.8
–0.6
–0.4
–0.2

0
0.2
0.4
0.6
0.8
1
1.2
1.4

1

2

3

4

1

2

3

4

–1
–0.5

0
0.5

1
1.5

2
2.5

Topology schedule [x n]

IW schedule [x n2]

Solution Quality

(a) 20 particles, 103 evaluations

–1
–0.8
–0.6
–0.4
–0.2

0
0.2
0.4
0.6
0.8
1

1

2

3

4

1

2

3

4

–1
–0.5

0
0.5

1
1.5

2
2.5

Topology schedule [x n]

IW schedule [x n2]

Solution Quality

Best

(b) 60 particles, 103 evaluations

–0.6
–0.4
–0.2

0
0.2
0.4
0.6
0.8
1
1.2

1.4
1.6

1

2

3

4

1

2

3

4

–1
–0.5

0
0.5

1
1.5

2
2.5

Topology schedule [x n]

IW schedule [x n2]

Solution Quality

Best

(c) 20 particles, 106 evaluations

–0.6
–0.4
–0.2

0
0.2
0.4
0.6
0.8
1

1

2

3

4

1

2

3

4

–1
–0.5

0
0.5

1
1.5

2
2.5

Topology schedule [x n]

IW schedule [x n2]

Solution Quality

Best

(d) 60 particles, 106 evaluations

Fig. 5. Average standard solution quality as a function of the topology update and the inertia weight schedules for different termination criteria. In each
case, the best configuration is pointed out by an arrow.

is varied from 0.9 to 0.4, and the sum of the acceleration
coefficients ϕ is set to 4.0.

The experimental conditions described in Section III are
used. Three swarm sizes (n = 20, 40, 60), four schedules of
the topology update (measured in iterations; k = n, 2n, 3n,
4n) and four schedules of the inertia weight (measured in func-
tion evaluations; wtmax = n2, 2n2, 3n2, 4n2) were tried. Note
that the values of k and wtmax are independent of each other.

As an illustrative example of the results, consider Fig. 4. It
shows the RLDs obtained by Frankenstein’s PSO algorithm
on Griewank’s function. These distributions correspond, as
before, to a solution quality 0.001% above the optimum value.
Only the results obtained with 4 out of the 12 possible combi-
nations of topology schedules and population sizes are shown.2

A combination of a slow topology update schedule (3n or
4n) and a fast inertia weight schedule (n2 or 2n2) promotes
the stagnation of the algorithm. This can be explained if we
recall that FIPS has a strong stagnation tendency when using a
highly connected topology: A slow topology update schedule
maintains a high topology connectivity for more iterations, and
a fast inertia weight schedule quickly reduces the exploration
capabilities of the particle swarm. These two effects also
increase the algorithm’s stagnation tendency. To counteract a
fast stagnation tendency, the two possibilities are to slow down
the inertia weight schedule or to speed up the change of the
topology.

Increasing the number of particles increases the amount
of information available to the algorithm during the first
iterations. The exploitation of this information depends on the
topology update and inertia weight schedules. The configura-
tions that appear to better exploit it are those in which these
two schedules are slow.

To compare the configurations’ relative performance across
problems that have different scales, we look at the average

2We remind the reader that the full experimental data are available at [20].

(over the eight benchmark problems of the experimental setup)
of the standardized median solution quality (i.e., for each
group, the mean is equal to zero and the standard deviation
is equal to 1) as a function of the topology update and the
inertia weight schedules for different termination criteria. The
results are shown in Fig. 5. Since we work with minimization
problems, a lower average standard solution quality means that
the specific configuration found better solutions.

According to Fig. 5, the algorithm needs more exploratory
configurations (i.e., fast topology update schedules and slow
inertia weight schedules) for long runs. For short runs, config-
urations with slow topology update schedules and fast inertia
weight schedules yield the best results. For runs of 104 and 105

function evaluations, the best configurations are intermediate
ones (i.e., fast or slow schedules for both the topology and
inertia weight updates).

The more exploratory behavior that a large population
provides needs to be counterbalanced by the chosen con-
figuration. For example, at 103 function evaluations, the
best configuration tends to have faster inertia weight sched-
ules for larger swarms. With 20 particles, the best config-
uration is at point (4, 3), while with 40 and 60 particles
the best configurations are at (4, 2) and (4, 1), respectively.
These results are consistent with those of the experimental
comparison.

Like any other algorithm, Frankenstein’s PSO has its own
set of parameters that need to be set by the practitioner
before trying to solve a problem. The final parameter settings
will depend on the class of problems one is trying to solve
and on the application scenario requirements. Based on the
results presented in this section we can derive the following
guidelines for choosing the topology and the inertia weight
schedules. If the number of function evaluations is restricted,
a configuration with 20 particles, a slow topology change
schedule (≈ 4n), and an intermediate inertia weight schedule

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on September 30, 2009 at 08:25 from IEEE Xplore. Restrictions apply.

1130 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 5, OCTOBER 2009

TABLE VI

BEST OVERALL CONFIGURATIONS OF DIFFERENT PSO VARIANTS FOR DIFFERENT TERMINATION CRITERIA. EACH GROUP IS SORTED BY THE

AVERAGE STANDARD SOLUTION QUALITY IN ASCENDING ORDER, SO THE BEST OVERALL CONFIGURATION IS LISTED FIRST

FES Algorithm Ackley Griewank Rastrigin Salomon Schwefel Step Rosenbrock Sphere Average

103

Frankenstein’s PSO −2.024 −0.955 −0.975 −0.517 1.378 −1.315 −0.302 −1.108 −0.727
Increasing-IW −0.013 −0.393 −0.950 −0.323 −1.229 −0.645 −0.367 −0.371 −0.536
Decreasing-IW −0.002 −0.386 −1.067 −0.316 −1.199 −0.359 −0.474 −0.425 −0.528

FIPS −0.765 −0.430 −0.080 −0.457 1.432 −0.932 0.206 −0.538 −0.195
Constricted 0.476 −0.156 0.287 −0.276 −0.213 0.406 −0.491 −0.057 −0.003

Stochastic-IW 0.656 0.124 0.652 −0.237 −0.046 0.693 −0.488 0.304 0.207
AHPSO 0.476 −0.156 0.287 2.464 −0.213 0.406 −0.491 −0.057 0.340

HPSOTVAC 1.198 2.353 1.847 −0.338 0.090 1.745 2.406 2.251 1.444

104

Increasing−IW −0.129 −0.564 −0.593 −0.349 −0.797 −0.539 −0.348 −0.359 −0.460
Constricted −0.212 −0.616 −0.591 −0.373 −0.459 −0.539 −0.376 −0.359 −0.441

Decreasing-IW −0.065 −0.518 −0.962 −0.341 −0.754 −0.085 −0.370 −0.358 −0.431
Frankenstein’s PSO −1.061 −0.761 0.056 −0.386 1.332 −0.993 −0.414 −0.361 −0.324

Stochastic-IW −0.131 0.443 −0.512 −0.361 −0.541 −0.085 −0.290 −0.359 −0.230
FIPS −1.056 −0.718 1.567 −0.378 1.760 −0.539 −0.364 −0.361 −0.011

AHPSO 0.569 0.656 −0.512 2.474 −0.641 0.596 −0.312 −0.316 0.314
HPSOTVAC 2.086 2.077 1.546 −0.287 0.101 2.185 2.473 2.475 1.582

105

Frankenstein’s PSO −0.354 −0.883 −1.192 −0.359 −1.548 −0.487 0.782 −0.354 −0.549
Decreasing-IW −0.354 0.631 −0.709 −0.355 −0.311 −0.787 −0.983 −0.354 −0.402
Increasing-IW −0.354 0.631 0.108 −0.355 −0.271 −0.787 −0.441 −0.354 −0.228

Constricted −0.354 −0.883 0.313 −0.359 0.729 −0.487 0.216 −0.354 −0.147
Stochastic-IW −0.354 0.631 1.130 −0.359 0.649 −0.787 −1.013 −0.354 −0.057

FIPS −0.354 −0.883 1.060 −0.355 1.372 0.712 1.008 −0.354 0.276
AHPSO −0.354 1.639 0.721 2.475 0.529 0.712 −1.019 −0.354 0.544

HPSOTVAC 2.475 −0.883 −1.431 −0.334 −1.149 1.911 1.449 2.475 0.564

106

Frankenstein’s PSO −0.354 −0.354 −0.787 −0.358 −1.257 −0.661 −0.058 −0.504 −0.542
Increasing-IW −0.354 −0.354 0.002 −0.354 0.019 −0.661 0.039 −0.504 −0.271
Decreasing-IW −0.354 −0.354 0.472 −0.354 0.367 −0.661 −0.778 −0.504 −0.271

FIPS −0.354 −0.354 −0.546 −0.354 −1.349 0.661 0.685 −0.504 −0.264
Stochastic-IW −0.354 −0.354 0.415 −0.358 0.705 −0.661 −0.529 −0.504 −0.205

Constricted −0.354 −0.354 0.815 −0.358 1.072 −0.661 −0.717 −0.504 −0.132
HPSOTVAC 2.475 −0.354 −1.760 −0.341 −0.705 0.661 2.129 2.184 0.536

AHPSO −0.354 2.475 1.388 2.475 1.149 1.984 −0.771 0.840 1.148

(≈ 3n2) would be the first one to try. If solution quality is
the main concern, a configuration with 60 particles, a fast
topology update schedule (≈ n), and a slow inertia weight
(≈ 4n2) should be preferred.

VI. PERFORMANCE EVALUATION

The performance of Frankenstein’s PSO is evaluated by
comparing its best configurations with those of the PSO
algorithms described in Section IV. The best configurations of
each variant were selected using the same ranking scheme as
in Section IV-B. The list of selected configurations is available
at [20].

Table VI shows the standardized median solution quality ob-
tained by each configuration (identified only by the algorithm’s
name) for each termination criterion. The best values for each
individual problem and stopping criterion are highlighted in
boldface.

For runs of 103, 105, and 106 function evaluations, the best
overall configuration is the one of Frankenstein’s PSO. For
runs of 104 function evaluations, the configuration of Franken-
stein’s PSO is ranked in the fourth place. However, with this
same number of function evaluations, the configuration of
Frankenstein’s PSO is the best configuration in six of the eight

benchmark problems. The average rank of Frankenstein’s PSO
after 104 function evaluations can be explained with the results
on Schwefel’s function: FIPS (of which a component is used in
Frankenstein’s PSO) is the worst algorithm for this termination
criterion (and also for the one of 103 function evaluations) on
Schwefel’s function.

The performance of Frankenstein’s PSO suggests that in-
deed it is possible and profitable to integrate different existing
algorithmic components into a single PSO variant. The results
show that by composing existing algorithmic components, new
high-performance variants can be built. At the same time, it
is possible to gain insights into the effects of the interactions
of different components on the algorithm’s final performance.
Of course, just as it is possible to take advantage of the
strengths of different components, it is also possible that their
weaknesses are passed on: the performance of Frankenstein’s
PSO on Schwefel’s function is an example of this.

VII. CONCLUSION AND FUTURE WORK

Many PSO variants are proposed in the current literature.
This is a consequence of the great attention that PSO has
received since its introduction. However, it is also a sign of
the lack of knowledge about which algorithmic components

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on September 30, 2009 at 08:25 from IEEE Xplore. Restrictions apply.

MONTES DE OCA et al.: FRANKENSTEIN’S PSO: A COMPOSITE PARTICLE SWARM OPTIMIZATION ALGORITHM 1131

provide good performance on particular types of problems and
under different operating conditions.

In an attempt to gain insight into the performance ad-
vantages that different algorithmic components provide, we
compared what we consider to be some of the most influen-
tial or promising PSO variants. For practical reasons, many
variants were left out of this paper. Future studies should
consider other variants as well as other components that are not
necessarily present in existing PSO algorithms. In fact, some
works are already exploring these issues [30]–[34]. Recently,
an alternative way of composing algorithmic components
has been proposed [35]. The approach consists in shifting
the integration of components from the particle level to the
swarm level by creating heterogeneous swarms, that is, swarms
composed of particles that move using different rules (i.e.,
algorithmic components). An avenue of research that seems
promising is to experiment with random topologies that satisfy
some constraints (e.g., a desired average connection degree).
These works would help in improving our understanding of
the interactions among PSO algorithmic components.

As might be expected, the results of our experimental
comparison showed that no variant dominates all the others
on all the problems of our benchmark suite over different run
lengths. Nevertheless, we were able to identify general trends
on the influence that various PSO algorithmic components and
their parameters have on performance.

Based on these insights, we explored the possible advan-
tages of combining algorithmic components that provided
good performance into a single PSO variant by assembling
a composite algorithm that we call Frankenstein’s PSO. This
new PSO algorithm is composed of three main algorithmic
components: 1) a time-varying population topology that de-
creases its connectivity as the optimization process evolves;
2) a particles’ velocity-update mechanism that exploits every
stage of the topology change process; and 3) a time-decreasing
inertia weight that allows the user to tune the algorithm’s
exploration/exploitation capabilities. In many cases, Franken-
stein’s PSO is capable of performing better than the variants
from which its components were taken.

As a methodological approach, in-depth experimental stud-
ies can help in identifying positive and negative (in terms
of performance) interactions among algorithmic components
and provide strong guidance for the informed design of
new composite algorithms. Another selection of PSO variants
would have probably ended up in a different Frankenstein’s
PSO algorithm. For this reason, further research is needed to
understand which components are better suited for particular
classes of problems and operating conditions and whether
some components can be integrated into the same composite
algorithm or not. Methods to quantify the contribution of each
component on the composite algorithms’ final performance are
also needed to achieve this goal.

REFERENCES

[1] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc.
IEEE Int. Conf. Neural Netw., 1995, pp. 1942–1948.

[2] A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence.
1st ed. Chichester, U.K.: Wiley, 2005.

[3] M. Clerc, Particle Swarm Optimization. 1st ed. London, U.K.: Wiley-
ISTE, 2006.

[4] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization. An
overview,” Swarm Intell., vol. 1, no. 1, pp. 33–57, 2007.

[5] M. Clerc and J. Kennedy, “The particle swarm–explosion, stability, and
convergence in a multidimensional complex space,” IEEE Trans. Evol.
Comput., vol. 6, no. 1, pp. 58–73, Feb. 2002.

[6] S.-K. S. Fan and E. Zahara, “A hybrid simplex search and particle
swarm optimization for unconstrained optimization,” Eur. J. Oper. Res.,
vol. 181, no. 2, pp. 527–548, 2007.

[7] Y. Shi and R. Eberhart, “Parameter selection in particle swarm optimiza-
tion,” in Proc. 7th Int. Conf. Evol. Program., LNCS vol. 1447. 1998,
pp. 591–600.

[8] R. Eberhart and Y. Shi, “Comparing inertia weights and constriction
factors in particle swarm optimization,” in Proc. IEEE Congr. Evol.
Comput. 2000, pp. 84–88.

[9] I. C. Trelea, “The particle swarm optimization algorithm: Convergence
analysis and parameter selection,” Inform. Process. Lett., vol. 85, no. 6,
pp. 317–325, 2003.

[10] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Proc.
IEEE Int. Conf. Evol. Comput., 1998, pp. 69–73.

[11] Y. Shi and R. Eberhart, “Empirical study of particle swarm optimiza-
tion,” in Proc. IEEE Congr. Evol. Comput. 1999, pp. 1945–1950.

[12] Y.-L. Zheng, L.-H. Ma, L.-Y. Zhang, and J.-X. Qian, “On the conver-
gence analysis and parameter selection in particle swarm optimization,”
in Proc. IEEE Int. Conf. Mach. Learning Cybern. 2003, pp. 1802–1807.

[13] Y.-L. Zheng, L.-H. Ma, L.-Y. Zhang, and J.-X. Qian, “Empirical study
of particle swarm optimizer with an increasing inertia weight,” in Proc.
IEEE Congr. Evol. Comput. 2003, pp. 221–226.

[14] R. Eberhart and Y. Shi, “Tracking and optimizing dynamic systems with
particle swarms,” in Proc. IEEE Congr. Evol. Comput. 2001, pp. 94–100.

[15] R. Mendes, J. Kennedy, and J. Neves, “The fully informed particle
swarm: Simpler, maybe better,” IEEE Trans. Evol. Comput., vol. 8, no. 3,
pp. 204–210, Jun. 2004.

[16] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-organizing
hierarchical particle swarm optimizer with time-varying acceleration
coefficients,” IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 240–255,
Jun. 2004.

[17] S. Janson and M. Middendorf, “A hierarchical particle swarm optimizer
and its adaptive variant,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 35, no. 6, pp. 1272–1282, Dec. 2005.

[18] J. J. Liang, P. N. Suganthan, and K. Deb, “Novel composition test
functions for numerical global optimization,” in Proc. IEEE Swarm
Intell. Symp., 2005, pp. 68–75.

[19] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger,
and S. Tiwari, “Problem definitions and evaluation criteria for the
CEC 2005 special session on real-parameter optimization,” Nanyang
Technological Univ., Singapore and IIT, Kanpur, India, Tech. Rep.
2005005, 2005.

[20] M. A. Montes de Oca, T. Stützle, M. Birattari, and M. Dorigo.
(2008, July). Frankenstein’s PSO: Complete Data [Online]. Available:
http://iridia.ulb.ac.be/supp/IridiaSupp2007-002/

[21] R. Mendes, “Population topologies and their influence in particle swarm
performance,” Ph.D. dissertation, Escola de Engenharia, Universidade do
Minho, Portugal, 2004.

[22] A. Mohais, R. Mendes, C. Ward, and C. Posthoff, “Neighborhood re-
structuring in particle swarm optimization,” in Proc. 18th Australian
Joint Conf. Artificial Intell., LNCS vol. 3809. 2005, pp. 776–785.

[23] H. H. Hoos and T. Stützle, Stochastic Local Search: Foundations and
Applications. 1st ed. San Francisco, CA: Morgan Kaufmann, 2004.

[24] J. Niehaus and W. Banzhaf, “More on computational effort statistics
for genetic programming,” in Proc. 6th Eur. Conf. Genetic Program.
EuroGP 2003, LNCS vol. 2610. pp. 164–172.

[25] M. A. Montes de Oca, T. Stützle, M. Birattari, and M. Dorigo, “A com-
parison of particle swarm optimization algorithms based on runlength
distributions,” in Proc. 5th Int. Workshop, Ant Colony Optimization
Swarm Intell. (ANTS ’06), LNCS vol. 4150, 2006, pp. 1–12.

[26] M. A. Montes de Oca and T. Stützle, “Convergence behavior of the fully
informed particle swarm optimization algorithm,” in Proc. Genetic Evol.
Comput. Conf. (GECCO), 2008, pp. 71–78.

[27] R. Poli, “On the moments of the sampling distribution of particle
swarm optimisers,” in Proc. Workshop Particle Swarm Optimization: 2nd
Decade. Genetic Evol. Comput. Conf. (GECCO). 2007, pp. 2907–2914.

[28] J. Wang and D. Wang, “Experiments and analysis on inertia weight in
particle swarm optimization,” in Proc. Int. Conf. Service Syst. Manage.,
2004, pp. 655–659.

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on September 30, 2009 at 08:25 from IEEE Xplore. Restrictions apply.

1132 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 5, OCTOBER 2009

[29] P. N. Suganthan, “Particle swarm optimiser with neighbourhood
operator,” in Proc. IEEE Congr. Evol. Comput. 1999, pp. 1958–1962.

[30] R. Mendes and J. Kennedy, “Stochastic barycenters and beta distribution
for gaussian particle swarms,” in Proc. Portuguese Conf. Artificial Intell.
(EPIA 2007), LNAI vol. 4874, pp. 259–270.

[31] J. Jordan, S. Helwig, and R. Wanka, “Social interaction in particle
swarm optimization, the ranked FIPS and adaptive multi-swarms,” in
Proc. Genetic Evol. Comput. Conf. (GECCO), 2008, pp. 49–56.

[32] J. Yisu, J. Knowles, L. Hongmei, L. Yizeng, and D. B. Kell, “The
landscape adaptive particle swarm optimizer,” Appl. Soft Comput., vol.
8, no. 1, pp. 295–304, 2008.

[33] G. Ramana Murthy, M. Senthil Arumugam, and C. K. Loo, “Hybrid
particle swarm optimization algorithm with fine tuning operators,” Int.
J. Bio-Inspired Comput., vol. 1, no. 1–2, pp. 14–31, 2009.

[34] A. Garca-Villoria and R. Pastor, “Introducing dynamic diversity into a
discrete particle swarm optimization,” Comput. Oper. Res., vol. 36, no.
3, pp. 951–966, 2009.

[35] M. A. Montes de Oca, J. Peña, T. Stützle, C. Pinciroli, and M. Dorigo,
“Heterogeneous particle swarm optimizers,” in Proc. IEEE Congr. Evol.
Comput. (CEC ’09). Piscataway, NJ: IEEE Press, pp. 698–705.

Marco A. Montes de Oca received the B.S.
degree in computer systems engineering from
Escuela Superior de Cómputo, Instituto Politécnico
Nacional, Mexico City, Mexico, in 2001, and the
M.S. degree in intelligent systems with honors from
the Instituto Tecnológico y de Estudios Superi-
ores de Monterrey, Campus Monterrey, Monterrey,
Mexico, in 2005. He is currently working toward the
Ph.D. degree in engineering sciences in the Institut
de Recherches Interdisciplinaires et de Développe-
ments en Intelligence Artificielle (IRIDIA), Univer-

sité Libre de Bruxelles, Brussels, Belgium.

Thomas Stützle received the Diploma, M.S. de-
gree, in business engineering from the Universität
Karlsruhe (TH), Karlsruhe, Germany, in 1994, and
the Ph.D. degree and the “Habilitation” in computer
science from the Department of Computer Science,
the Technische Universität Darmstadt, Germany in
1998 and 2004, respectively.

He is currently a Research Associate of the
Belgian F.R.S.-FNRS working in the Institut de
Recherches Interdisciplinaires et de Développements
en Intelligence Artificielle (IRIDIA), Université Li-

bre de Bruxelles, Brussels, Belgium. He is the author of two books: Sto-
chastic Local Search: Foundations and Applications (Morgan Kaufmann),
and Ant Colony Optimization (MIT Press). He has published extensively
in the wider area of metaheuristics (about 100 peer-reviewed articles in
journals, conferences, or edited books). His research interests range from
stochastic local search (SLS) algorithms, large-scale experimental studies,
and automated design of algorithms, to SLS algorithms engineering. He is
on the editorial boards of five journals and he has co-edited five journal
special issues and eleven workshop or conference proceedings. He has been
the main organizer of the workshops on Engineering Stochastic Local Search
Algorithms, Brussels, Belgium, in September 2007 and 2009.

Mauro Birattari (M’05) received the Master’s de-
gree in electrical and electronic engineering from
Politecnico di Milano, Milan, Italy, in 1997, and the
Ph.D. degree in information technologies from the
Faculty of Engineering, Institut de Recherches Inter-
disciplinaires et de Développements en Intelligence
Artificielle (IRIDIA), Université Libre de Bruxelles,
Brussels, Belgium, in 2004.

He is currently with IRIDIA-CoDE, Université
Libre de Bruxelles, as a Research Associate spon-
sored by the fund for scientific research F.R.S.-

FNRS of Belgium’s French community. He has coauthored about 70 peer-
reviewed scientific publications in the field of computational intelligence. His
research interests focus on swarm intelligence, ant colony optimization, and
the automatic design of algorithms. He is an Associate Editor of Swarm
Intelligence and has served on the organizing committees of a number of
international conferences on swarm intelligence, evolutionary algorithms, and
metaheuristics, including ANTS, SLS, and GECCO.

Marco Dorigo (S’92–M’93–SM’96–F’06) received
the Laurea, Master of Technology, degree in indus-
trial technologies engineering in 1986, and the Ph.D.
degree in electronic engineering in 1992 from the
Politecnico di Milano, Milan, Italy, and the title
of Agrégé de l’Enseignement Supérieur, from the
Université Libre de Bruxelles, Brussels, Belgium, in
1995.

From 1992 to 1993, he was a Research Fellow at
the International Computer Science Institute, Berke-
ley, CA. In 1993, he was a NATO-CNR Fellow, and

from 1994 to 1996, a Marie Curie Fellow. Since 1996, he has been a tenured
Researcher of the FNRS, the Belgian National Funds for Scientific Research,
and a Research Director of IRIDIA, the artificial intelligence laboratory of the
Université Libre de Bruxelles. He is the inventor of the ant colony optimization
metaheuristic. His current research interests include swarm intelligence,
swarm robotics, and metaheuristics for discrete optimization. He is the Editor-
in-Chief of Swarm Intelligence, and an Associate Editor or member of the
Editorial Boards of many journals on computational intelligence and adaptive
systems.

Dr. Dorigo is a Fellow of the ECCAI. He was awarded the Italian Prize for
Artificial Intelligence in 1996, the Marie Curie Excellence Award in 2003,
the Dr. A. De Leeuw-Damry-Bourlart award in applied sciences in 2005, and
the Cajastur International Prize for Soft Computing in 2007.

Authorized licensed use limited to: IEEE Transactions on SMC Associate Editors. Downloaded on September 30, 2009 at 08:25 from IEEE Xplore. Restrictions apply.

