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Abstract—Incremental social learning (ISL) was proposed as a
way to improve the scalability of systems composed of multiple
learning agents. In this paper, we show that ISL can be very useful
to improve the performance of population-based optimization
algorithms. Our study focuses on two particle swarm optimization
(PSO) algorithms: a) the incremental particle swarm optimizer
(IPSO), which is a PSO algorithm with a growing population size
in which the initial position of new particles is biased toward the
best-so-far solution, and b) the incremental particle swarm opti-
mizer with local search (IPSOLS), in which solutions are further
improved through a local search procedure. We first derive ana-
lytically the probability density function induced by the proposed
initialization rule applied to new particles. Then, we compare
the performance of IPSO and IPSOLS on a set of benchmark
functions with that of other PSO algorithms (with and without
local search) and a random restart local search algorithm. Finally,
we measure the benefits of using incremental social learning on
PSO algorithms by running IPSO and IPSOLS on problems with
different fitness distance correlations.

Index Terms—Continuous optimization, incremental social
learning (ISL), local search, particle swarm optimization (PSO),
swarm intelligence.

I. INTRODUCTION

IN A SYSTEM composed of numerous learning agents, each
agent not only must adapt to the features of the environment,

but also has to cope with behavioral changes of other agents.
This is an important problem in swarm intelligence research [1],
[2] because learning is especially challenging when the number
of agents involved is large [3], [4]. To tackle this problem, we
have recently proposed an increasing population size approach
that in some cases facilitates the scalability of systems com-
posed of multiple learning agents [5]. This approach, which
we call incremental social learning (ISL), is inspired by the
phenomenon of social learning in animal societies [6].
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In this paper, we show how ISL can be used in the context
of population-based optimization algorithms, and in particular,
in the context of particle swarm optimization (PSO) algorithms
[7]–[12]. Two facts justify the application of ISL to population-
based optimization algorithms: First, just as the performance of
a multiagent system is affected by the size of the population,
population-based optimization algorithms usually exhibit a so-
lution quality versus speed tradeoff that depends, among other
things, on the population size chosen [13]–[17]. Second, in the
same way as learning agents in a multiagent system change
often their behavior to test whether the last change is useful,
individuals in a population-based optimization algorithm can be
seen as changing position in an optimization problem’s search
space to test whether the new position is better. We decided
to use PSO algorithms because they exhibit a solution quality
versus speed tradeoff that is amenable to the application of ISL:
When a limited number of function evaluations are allowed,
small populations obtain the best results. In contrast, when
solution quality is the most important aspect, large populations
work better [18], [19].

We propose two algorithms that result from the application
of ISL to PSO algorithms. The first one is an incremental PSO
algorithm (IPSO) [5], in which the population size grows over
time. In this algorithm, when a new particle is added to the
population, its position is initialized using a “social learning”
rule that induces a bias toward the best particle. The second
algorithm is an extension of IPSO (IPSOLS) [20] in which
particles go through a process of “individual learning,” which
is simulated through a local search procedure.

The goals of the work presented in this paper are the
following:

1) To determine the probability density function induced by
the “social learning” initialization rule to understand how
and under which conditions the biased initialization of
new particles works (Section V).

2) To empirically evaluate the performance of both IPSO
and IPSOLS. The performance of the algorithms is com-
pared with that of constant and variable population size
PSO algorithms with and without local search, as well as
with a random restart local search algorithm (Section VI).

3) To empirically measure the effect that the new particles
initialization rule has on the performance of IPSO and
IPSOLS on problems with different fitness distance cor-
relations (FDCs) (Section VII).

We start by reviewing related work in Section II. We then
describe in detail the ISL framework in Section III, and the ISL-
based PSO algorithms in Section IV. The core of the paper is
developed in Sections V–VII. Conclusions and future work are
presented in Section VIII.
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II. RELATED WORK

IPSO and IPSOLS are two PSO-based algorithms in which
the population size changes during the optimization process.
IPSOLS is additionally a PSO–local search hybrid. In this
section, we briefly review related work on both topics. We
highlight the differences that exist between previous ap-
proaches, and both IPSO and IPSOLS.

A. PSO Algorithms With Time-Varying Population Size

Population sizing has been studied within the field of evolu-
tionary computation for many years. From that experience, it is
now usually accepted that the population size in evolutionary
algorithms should be proportional to the problem’s difficulty
[21]. The issue is that it is not uncommon to know little
about a problem’s difficulty a priori. As a result, evolution-
ary algorithms with time-varying population size have been
proposed (see, e.g., [22]–[28]). This research issue has just
been recently addressed by the PSO community, and thus, not
many research contributions exist on this topic. Coelho and
de Oliveira [29] adapt the population resizing mechanisms
used in APGA [24] and PRoFIGA [25] for their use in PSO
algorithms. Lanzarini et al. [30] proposed a method for varying
the size of the population by assigning a maximum lifetime
to groups of particles based on their performance and spatial
distribution. A time-varying population size approach has been
adopted by Leong and Yen [31] for tackling multiobjective
optimization problems with PSO algorithms. In [32], the opti-
mization process is divided into a number of periods at the end
of which the population size changes. The decision of whether
the population size should increase or decrease depends on
a diversity measure. Finally, in [33], the authors adapt the
swarm size based on the ability of the particles to improve their
personal best solutions and the best-so-far solution.

All these proposals share a common problem: they eliminate
the population size parameter, but introduce many more. For
example, they require the user to set a particle’s maximum
lifetime, to select the number of iterations without improvement
so that a particle is added or removed, to choose particle recom-
bination operators, and so on. In contrast, our approach intro-
duces only two parameters: the rate at which the population size
should grow and the way new particles should be initialized.
The setting of the first parameter is based on the ISL framework
and the rules for initializing new particles are analyzed in detail
in Sections V and VII. Additionally, our approach is simple to
understand and to implement, and provides advantages that will
be described in the rest of the paper.

In contrast to practically all previously studied strategies, our
approach, in its current form, does not consider the possibility
of reducing the size of the population during an algorithm’s run.
The rationale behind previous approaches is that large popula-
tions mean more function evaluations per iteration and thus, if
the particles have converged, they can result in a waste of func-
tion evaluations. However, there are algorithms in which the
population size is not decreased. In addition to our work, we can
find the work of Auger and Hansen [26], in which the popula-
tion size of an evolution strategy with covariance matrix adapta-
tion (CMA-ES) [41], [42] algorithm is doubled each time it is
restarted. As it will be seen later, not decreasing the population
size does not affect negatively the performance of IPSO or
IPSOLS.

B. PSO Algorithms Hybridized With Local Search Procedures

The idea of combining local search techniques with PSO
algorithms comes partly from the observation that particles
are attracted to their own and their neighbors’ previous best
positions. The underlying idea is that the better the attractors of
a particle are, the higher the chances that a particle finds even
better solutions. The goal of most hybrid algorithms, IPSOLS
included, is thus to accelerate the placement of the particles’
previous best positions in good locations. For example,
Chen et al. [34] combined a particle swarm algorithm with a
hill-climbing local search procedure. Liang and Suganthan [35]
used a quasi-Newton method to improve a subset of the solu-
tions found by a multi-swarm algorithm. Gimmler et al. [36]
experimented with PSO-based hybrids using Nelder and
Mead’s simplex method as well as with Powell’s direction
set method, finding better results with Powell’s method.
Das et al. [37] also used Nelder and Mead’s simplex method
and proposed the inclusion of an estimate of the local gradient
into the particles’ velocity update rule. In [38], a two-phase ap-
proach is described where a PSO algorithm is used first to find a
good solution and, in a second phase, a quasi-Newton method is
used to refine it. Petalas et al. [39] report experiments with sev-
eral local search-particle swarm combination schemes. In [40],
Müller et al. describe a hybrid PSO–CMA-ES algorithm in
which a full-fledged population-based algorithm (CMA-ES)
is used as a local search procedure. Other PSO-local search
hybrids are reported in [43], [44]. Our proposal is not different
from the aforementioned approaches in the sense that it uses
a local search procedure. In all cases, the goal is to accelerate
the discovery of good solutions. However, our work is the
first to explore the possible benefits of combining a variable
population size with local search procedures in the context
of PSO algorithms. We will see that this combination allows
IPSOLS to adapt to the features of the objective function as
discussed in Section VIII.

III. INCREMENTAL SOCIAL LEARNING

Designing systems composed of numerous autonomous
agents that at a collective level exhibit some desired behaviors is
a very active research area. One approach consists in letting the
agents that comprise the multiagent system learn by themselves
the necessary individual behaviors. However, the interference
caused by the coexistence of multiple simultaneously adapting
agents, whose rewards depend on the group’s performance,
makes learning a very difficult task, especially when a large
agent population is involved [3], [4].

The incremental social learning framework [5] tackles the
problem described above by adding to the population one agent
at a time according to a schedule. The population is initially
composed of a small number of agents to allow a faster learning
than what would be possible with a larger population. Then,
agents are incrementally added to the population, which makes
it possible, in some cases, to allocate the optimal number of
agents needed for solving a particular task. An agent that is
added to the population learns socially from those that have
been in the population for some time. This element of ISL is
attractive because through social learning new agents acquire
knowledge from more experienced ones, without incurring the
costs of acquiring that knowledge individually [6]. Thus, ISL
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allows the new agents to save time that they can use to perform
their tasks or to learn new things. After the inclusion of a new
agent, the population needs to readapt to the new conditions, but
the agents that are part of it do not need to learn everything from
scratch. The algorithmic structure of the incremental social
learning framework is outlined in Algorithm 1.

Algorithm 1 Incremental social learning
/∗ Initialization ∗/
t ← 0
Initialize environment Et

Initialize population of agents Xt

/∗ Main loop ∗/
while Stopping criteria not met do

/∗ Agents are added according to a schedule ∗/
if Agent-addition criterion is not met then

Xt+1 ← ilearn(Xt,Et)/∗ Individual or default
learning mechanism ∗/

else
Create new agent anew

slearn(anew,Xt) /∗ Social learning mechanism ∗/
Xt+1 ← Xt ∪ {anew}

end if
Et+1 ← update(Et) /∗ Update environment ∗/
t ← t + 1

end while

The environment and the population of agents are initialized
before the main loop begins. If, according to the agent-addition
schedule, no agents are to be added, the agents in the popula-
tion learn either individually or using another default learning
mechanism, which could include elements of social or central-
ized learning. The agent-addition schedule controls the rate at
which agents are added to the population. It also creates time
delays that allow the agents in the population to learn from the
interaction with the environment and with other agents. Before
becoming part of the population, new agents learn socially from
a subset of the already experienced agents. In Algorithm 1,
the environment is updated explicitly to stress the fact that the
environment might be dynamic (although it does not need to be
so). In a real implementation, the environment can change at
any time and not necessarily at the end of a training round.

The actual implementations of the individual (or default) and
social learning mechanisms are independent of the incremental
social learning framework outlined above. Both generic or
application-specific mechanisms may be used.

Studies in simulation about the effects of different social
learning mechanisms, such as imitation, emulation, or stimulus
enhancement, have been undertaken before [45]; in our work,
however, we focus on the potential of learning socially in an
incremental way to speed up learning in a large population.

IV. INCREMENTAL SOCIAL LEARNING IN PARTICLE

SWARM OPTIMIZATION ALGORITHMS

The framework described in Section III can be used not only
in the context of multiagent systems, but also in the context
of population-based optimization algorithms. This is possible if
one interprets the individuals of a population-based optimiza-

tion algorithm as the learning agents of a multiagent system. In
this context, “learning”, understood as a trial-and-error process,
corresponds to the search mechanism used by the underlying
optimization algorithm whereby new candidate solutions are
tried and, eventually, better solutions are found. In this section,
we describe two instantiations of the ISL framework using a
PSO algorithm as the underlying search mechanism. We start
by presenting a basic PSO algorithm, and we continue with the
description of the two ISL-based algorithms that we propose in
this paper. Preliminary studies and results on this topic can be
found in [5] and [20].

A. Particle Swarm Optimization

PSO is a population-based stochastic optimization technique
used primarily to tackle continuous optimization problems. In
PSO jargon, a swarm is a group of particles that move in the
search space Θ⊆R

n of an optimization problem f :Θ→R with
the goal of finding an optimal solution.1 The position of a par-
ticle represents a candidate solution to the problem under con-
sideration. At each iteration, each particle is attracted toward its
own previous best position and toward the best position found by
the particles in its neighborhood, which is a subset of the swarm
that is usually defined before the algorithm is run. Neighbor-
hood relations define what is called a population topology,
which can be seen as a graph G={V,E}, where each vertex in
V corresponds to a particle in the swarm and each edge in E
establishes a neighbor relation between a pair of particles. The
rules that govern the movement of a particle i along the jth
dimension of the problem’s search space are the following:

vt+1
i,j = χ

[
vt

i,j +ϕ1U1

(
pt

i,j−xt
i,j

)
+ϕ2U2

(
lti,j−xt

i,j

)]
(1)

xt+1
i,j = xt

i,j +vt+1
i,j (2)

where vt
i,j and xt

i,j are, respectively the particle’s velocity and
position at time step t, pt

i,j is the particle’s best position so far,
lti,j is the best position found by the particle’s neighbors, ϕ1 and
ϕ2 are two parameters (called acceleration coefficients), U1 and
U2 are two uniformly distributed random numbers in the range
[0, 1) that are generated at every iteration for each dimension,
and χ is a parameter called constriction factor [46] that, if prop-
erly set, guarantees convergence in the search space (although
not necessarily to a local or global optimum [9]). A particle’s
velocity is usually constrained within the range [−Vmax,j ,
Vmax,j ] as this can improve the algorithm’s performance [47].

B. Incremental Particle Swarm Optimizer

The first instantiation of the ISL framework in the context of
PSO algorithms is an algorithm with a growing population that
we call incremental particle swarm optimizer (IPSO) [5].

According to the ISL framework, every time a new agent is
added to the population, it should learn socially from a subset
of the more experienced agents. In the case of IPSO, this means
that every time a new particle is added, it is initialized using
information from particles that are already part of the popula-
tion. This mechanism is implemented as an initialization rule
that moves the new particle from an initial randomly generated
position in the problem’s search space to one that is closer to

1Without loss of generality, in this paper we focus on the minimization case.
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the position of a particle that serves as a “model” to imitate
(hereafter referred to as model particle). The initialization rule
of a new particle’s jth dimension is the following:

x′
new,j = xnew,j + U · (pmodel,j − xnew,j) (3)

where x′
new,j is the new particle’s updated position, xnew,j

is the new particle’s original random position, pmodel,j is the
model particle’s position, and U is a uniformly distributed
random number in the range [0, 1). Once the rule is applied
for each dimension, the new particle’s previous best position
is initialized to the point x′

new and its velocity is set to zero.
The random number U is the same for all dimensions to ensure
that the new particle’s updated position will lie somewhere
along the direct attraction vector pmodel − xnew. Using inde-
pendent random numbers for each dimension would reduce the
strength of the bias induced by the initialization rule because
the resulting attraction vector would be rotated and scaled
with respect to the direct attraction vector. Finally, the new
particle’s neighborhood, that is, the set of particles from which
it will receive information in subsequent iterations, is generated
at random, respecting the connectivity degree of the swarm’s
population topology.

The selection of the model particle can be done in several
ways. In this paper, we focus on the behavior of the algorithm
when the best particle is used as model. Preliminary results
indicate that choosing the model particle at random does not
produce significantly different results than using the best parti-
cle as model [5]. We conjecture that this is due to the tendency
that particles have to cluster in the search space. In such a case,
the distance between the best particle and a random one would
not be large enough to produce significantly different results.

C. Incremental Particle Swarm Optimizer With Local Search

The incremental particle swarm optimizer with local search
(IPSOLS) algorithm works in the same way as IPSO with
the difference that in IPSOLS, particles not only move using
the traditional PSO rules, but also by invoking a local search
procedure [20]. In the context of the ISL framework, the local
search procedure can be interpreted as a particle’s “individual
learning” ability because it allows a particle to improve its
solution in the absence of any social influence. In this paper, the
local search procedure employed in IPSOLS is the well-known
Powell’s direction set method [48] using Brent’s technique
[49] as the auxiliary line minimization algorithm, although
other algorithms could be used. The quadratic convergence of
Powell’s direction set method can be very advantageous if the
objective function is locally quadratic, which is not uncommon
around a local optimum [50].

In IPSOLS, the local search procedure is called only when it
is expected to be beneficial; that is, the local search procedure
is invoked only when a particle’s previous best position is
not considered to be already in a local optimum. In [20], a
particle invoked the local search procedure at every iteration,
which could result in a waste of function evaluations. Checking
whether running again the local search procedure may be ben-
eficial or not is achieved by letting it return a value indicating
whether it finished because of a very small difference between
two solutions, or because the maximum number of iterations
was reached. In the first case, it is assumed that the local

search has converged to a local optimum and the particle does
not invoke the procedure again because no further significant
improvements are expected in that situation. In the second
case, the particle may call the local search procedure again
because further significant improvements can still be achieved.
The two parameters of the local search procedure that control
these exit criteria are the tolerance and the maximum number
of iterations, respectively. IPSO and IPSOLS are sketched in
Algorithm 2. The differences between these two algorithms are
indicated with boldface comments.

Algorithm 2 ISL-based PSO algorithms
Input: Objective function f : Θ ⊆ R

n → R, the initializa-
tion domain Θ′ ⊆ Θ, the agent-addition criterion A, the
maximum population size K, the local search procedure
parameters (tolerance, maximum number of iterations, step
size) and the parameters used by the PSO rules
(ϕ1, ϕ2, and χ).

Output: The best found solution sol ∈ Θ
/∗ Initialization ∗/
t ← 0 /∗ Iteration counter ∗/
k ← 1 /∗ Population size ∗/
Initialize position vector xt

k to random values within Θ′

Initialize velocity vector vt
k to zero

pt
k ← xt

k

ek ← true /∗ If ek = true, a local search should be
invoked for particle k (only in IPSOLS) ∗/

/∗ Main Loop ∗/
repeat

/∗ Individual learning k (only in IPSOLS) ∗/
for i = 1 to k do

if ek = true then
ek ← localsearch(f,pt

k) /∗ Returns true if
exited without converging, else returns false ∗/

end if
end for
/∗ Horizontal social learning ∗/
for i = 1 to k do

Generate xt+1
k using Eqs. 1 and 2

if f(xt+1
k ) < f(pt

k) then
pt+1

k ← xt+1
k

ek ← true /∗ only in IPSOLS ∗/
end if

end for
/∗ Population growth and vertical social learning ∗/
if Agent-addition criterion A is met and k < K then

Initialize vector pt+1
k+1 using Eq. 3 for each

component
Initialize velocity vector vt+1

k+1 to zero
xt+1

k+1 ← pt+1
k+1

ek+1 ← true /∗ only in IPSOLS ∗/
k ← k + 1

end if
t ← t + 1
sol ← arg mini∈{1,...,k} f(pt

i)
until Stopping criterion is satisfied
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In the main loop, IPSO and IPSOLS share two common
structures: the “horizontal social learning” and the “population
growth and vertical social learning” parts. They are labeled in
this way to distinguish between the two types of social learning
simulated in these algorithms. Horizontal social learning occurs
between agents of a same generation while vertical social learn-
ing occurs between agents of different generations [51]. When
the maximum population size is reached, IPSO and IPSOLS
become traditional constant population size algorithms.

V. ANALYSIS OF THE INITIALIZATION RULE:
PROBABILITY DENSITY FUNCTION

In IPSO and IPSOLS, the initial position of a new particle
is generated through an initialization rule whose goal is to
simulate the phenomenon of vertical social learning. This rule
biases the position of the newly created particle toward the
position of a particle that serves as an attractor or “model”. In
this section, we present the exact probability density function
induced by the initialization rule and describe some of its
properties. This is an important step for understanding how and
under which circumstances the initialization rule applied to new
particles works, and what its effects on IPSO and IPSOLS are.

In IPSO and IPSOLS, the initialization rule applied to new
particles (3) is a function of two random variables: the uni-
formly distributed original position and a uniformly distributed
random number in the range [0, 1), which determines the
strength of the attraction toward the position of the particle used
as a model (the best particle in the swarm in our case). The
model’s position is, strictly speaking, also a random variable
due to the fact that it is the result of a number of iterations
of the PSO position-update mechanism. However, when the
initialization rule is invoked, it can be taken as a constant.

The probability density function induced by the initialization
rule for dimension j is the following (its derivation is shown in
the Appendix):

fXj
(xj)=

1
|X| ·

⎧⎪⎪⎨
⎪⎪⎩

ln
∣∣∣pmodel,j−xmin,j

pmodel,j−xj

∣∣∣ , if xj <pmodel,j

0, if xj =pmodel,j

ln
∣∣∣pmodel,j−xmax,j

pmodel,j−xj

∣∣∣ , if xj >pmodel,j

(4)

where |X| = xmax,j − xmin,j , xmin,j , and xmax,j are the min-
imum and maximum limits of the initialization range over
the problem’s jth dimension and xmin,j ≤ xj < xmax,j . Fig. 1
shows the exact density function and a density histogram ob-
tained using Monte Carlo simulation when the initialization
range is [0, 1) and pmodel,j = 0.2. In a density histogram,
the height of each rectangle is equal to ki/wiN , where ki is
the number of observations of class i in an experiment of N
samples. The value wi is known as class i’s width and it is the
length of the range that defines class i. In our case, we set the
class width to wi = 0.02.

Most of the samples concentrate around the model’s position
as desired. Note, however, that there is a nonzero probability of
sampling regions far away from the model. This probability dis-
tribution offers a certain level of exploration-by-initialization
which would be difficult to obtain with a normally distributed
initialization around the model particle’s position. The problem
would be that setting the right value for the standard deviation
would depend on the model particle’s position. The probability

Fig. 1. Probability density function induced by the initialization rule of new
particles. In the figure, the attractor pmodel,j = 0.2. The initialization range in
this example is [0, 1). The figure shows both the analytical density function and
the density histogram obtained using Monte Carlo simulation (105 samples).

Fig. 2. Probability density function induced by the initialization rule of new
particles when the attractor lies outside the original initialization range. In the
figure, the attractor pmodel,j = 1.2. The initialization range is [0, 1). The
figure shows that the density function follows the analytical density function
up to the limit of the original initialization range. The histogram obtained using
Monte Carlo simulation (105 samples) shows the actual density function.

density function induced by the new particles initialization
rule is not symmetric except in the case pmodel,j = (xmax,j +
xmin,j)/2. The expected value of a new particle’s position is the
following:

E
(
x′

new,j

)
= E(xnew,j) + E(U) (pmodel,j − E(xnew,j))

= E(xnew,j) +
1
2

(pmodel,j − E(xnew,j))

=
xmax,j + xmin,j

4
+

pmodel,j

2
. (5)

The analysis presented above is valid only if the attractor
particle’s position is within the range [xmin,j , xmax,j). If the at-
tractor is outside the initialization range, the probability density
function remains the same within the initialization range but it
becomes a uniform distribution outside this range (see Fig. 2).

Under these conditions, a new particle will follow the model
only from one of its sides. The initialization rule is not able
to position a new particle beyond the location of the attractor
particle if this particle is outside the original initialization range.
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This is not necessarily a drawback because one would usually
expect the sought global optimum to lie within the chosen
initialization region.

VI. EXPERIMENTAL EVALUATION

In this section, we first describe the setup used to carry out
our experiments. After that, we present and discuss the results
of the empirical performance evaluation of the ISL-based PSO
algorithms presented in Section IV.

A. Experimental Setup

The performance of IPSO and IPSOLS was compared to that
of the following algorithms:

1) A traditional particle swarm optimization algorithm with
constant population size. This algorithm was included in
the evaluation to measure the contribution of the incre-
mental population component used in IPSO. This algo-
rithm is labeled as PSO-X , where X is the population
size used.

2) A recently proposed PSO algorithm with time-varying
population size (labeled EPUS) [33]. This algorithm in-
creases the population size by one if the best-so-far solu-
tion is not improved during k consecutive iterations and if
the current population size is not larger than a maximum
limit. The new particle’s position is equal to the result of a
crossover operation on the personal best positions of two
randomly selected particles. If the best-so-far solution
is improved during k consecutive iterations, the worst
particle of the swarm is removed from the swarm unless
the population size would fall below a minimum limit
after the operation. Finally, if the population size is equal
to the maximum limit but the swarm is unable to improve
the best-so-far solution during k consecutive iterations,
the worst particle is replaced by a new one. In this
paper, we do not use the mutation and solution sharing
mechanisms described in [33] so as not to confound the
effects of the variable population size with those of these
operators.

3) A hybrid particle swarm optimization algorithm with
local search (labeled PSOLS). It is a constant population
size particle swarm algorithm in which the particles’
previous best positions undergo an improvement phase
(via Powell’s method) before the velocity update rule is
applied. The local search is only applied when a particle’s
previous best position is not located in a local optimum,
just as it is done in IPSOLS. PSOLS was included in
the evaluation because, by comparing its performance to
that of IPSOLS, we can measure the contribution of the
incremental population component in combination with a
local search procedure.

4) A hybrid algorithm (labeled EPUSLS) that combines
EPUS with local search (Powell’s method). This algo-
rithm allows us to measure the relative performance dif-
ferences that may exist between a purely increasing and a
variable population size approach in combination with a
local search procedure. The same parameter settings used
for EPUS were used for EPUSLS.

5) A random restart local search algorithm (labeled RLS).
Every time the local search procedure (Powell’s method)

converges, it is restarted from a newly generated random
solution. The best solution found so far is considered to
be the output of the algorithm. This algorithm was consid-
ered as a baseline for the evaluation of the effectiveness of
the PSO component in EPUSLS, PSOLS, and IPSOLS.

All algorithms were run on a set of 12 commonly used
benchmark functions whose mathematical definition is shown
in Table I. In all cases, we used the 100-D versions of the
benchmark functions. In our experimental setup, each algorithm
was run with the same parameter settings across all benchmark
functions. The parameter settings used for each algorithm are
listed in Table II.

Our decision of adding one particle per iteration is based
on preliminary results that show that the particle-addition
schedule affects the exploration–exploitation behavior of IPSO
[5]. Faster schedules encourage exploration while slower ones
encourage exploitation. In IPSOLS, the exploitative behavior
induced by the local search procedure needs to be balanced with
an exploration–encouraging, fast particle-addition schedule.

The results reported in this paper are based on statistics
taken from 100 independent runs each of which was stopped
whenever one of the following criteria was met: 1) 106 function
evaluations had been performed, or 2) the objective function
value was less than or equal to 10−15. However, it was still
possible to find solutions with a lower value than this threshold
because the stopping criteria were evaluated outside the local
search procedure. To eliminate the effects of any possible
search bias toward the origin of the coordinate system, at each
run, a benchmark function was randomly shifted within the
specified search range. Functions Schwefel and Step were not
shifted as their optima are not at the origin of the coordinate
system. Bound constraints were enforced by putting variable
values of candidate solutions on the corresponding bounds. This
mechanism proved to be effective and easily applicable to both
PSO and local search components.

PSOLS was run with fewer particles than PSO because larger
populations would have prevented us from observing the effects
that are due to the interaction of the PSO and local search
components given the stopping criteria used. The reason is
that given the number of function evaluations required by each
invocation of the local search procedure and the maximum
number of function evaluations allocated for each experiment,
a large population would essentially behave as a random restart
local search, which was included in the comparison.

All particle swarm-based algorithms (PSO, PSOLS, EPUS,
EPUSLS, IPSO, and IPSOLS) were run with two population
topologies: a fully connected topology, in which each particle
is a neighbor to all others including itself, and the so-called
ring topology, in which each particle has two neighbors apart
from itself. In the incremental algorithms, the new particle is
randomly placed within the topological structure.

B. Performance Evaluation Results

Algorithms for continuous optimization are often evaluated
according to two different criteria. One of these criteria mea-
sures the quality of the solutions (through the objective function
values associated with them) that algorithms are able to find
given a maximum number of function evaluations. The other
criterion measures the number of function evaluations needed



374 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 41, NO. 2, APRIL 2011

TABLE I
BENCHMARK FUNCTIONS

by algorithms to reach a target objective function value. Since
the algorithms used in our study are stochastic, both perfor-
mance measures are also stochastic. For this reason, we look
at the distribution of the objective function values at different
run lengths, and of the number of function evaluations needed
to reach some target objective function values.2 We also look
at some central tendency measures to have a more aggregated
summary of the performance of the compared algorithms.
Finally, we present a summary of the statistical data analyisis
performed on all the data. In the discussion of the results, we
pay particular attention to the two main components of the ISL-
based algorithms, which are the variable population size and the
use of a local search procedure.

1) Constant Versus Variable Population Size: The distribu-
tions of the objective function values after 104 and 106 function
evaluations are shown in Figs. 3 and 4, respectively. On top of
each box plot there may be two rows of symbols. The lower
row, made of + symbols, indicates in which cases a statistically
significant difference exists between the marked algorithm and
IPSO (in favor of IPSO). The upper row, made of × symbols,
indicates in which cases a statistically significant difference
exists between the marked algorithm and IPSOLS (in favor of
IPSOLS). The results of all pairwise statistical significance tests
can be found in [52]. Significance was determined at the 5%
level using a Wilcoxon test using Holm’s correction method for
multiple comparisons.

The performance of constant population size PSO algorithms
without local search greatly depends on the population size.
The results obtained with the traditional PSO algorithm confirm
the tradeoff between solution quality and speed that we men-

2In this paper’s supplementary information web page [52], the reader can
find the complete data that, for the sake of conciseness, are not included in the
paper. Nevertheless, the main results are discussed in the text.

TABLE II
PARAMETER SETTINGS

tioned in the introduction. Swarms of 10 particles usually find
better solutions than larger swarms up to around 104 function
evaluations. Then, the swarms of 100 particles are typically
the best performing after 105 function evaluations, and after
106 function evaluations, the swarms with 1000 particles often
return the best solutions. This tendency can also be seen in
Table III, which lists the median objective function values
obtained by the tested algorithms on all benchmark functions
at different run lengths.
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Fig. 3. Box plots show the distribution of the solution quality obtained with the compared algorithms for runs of up to 104 function evaluations. These results
correspond to the case in which a fully connected topology is used with all particle swarm-based algorithms. A symbol on top of a box plot denotes a statistically
significant difference at the 5% level between the results obtained with the indicated algorithm and those obtained with IPSO (in favor of IPSO, marked with a
+ symbol) or with IPSOLS (in favor of IPSOLS, marked with a × symbol). (a) Ackley. (b) Axis-parallel Hyper-ellipsoid. (c) Extended Schaffer. (d) Griewank.
(e) Penalized function. (f) Rastrigin. (g) Rosenbrock. (h) Salomon. (i) Schwefel. (j) Step. (k) Sphere. (l) Weierstrass.

Regarding the algorithms with variable population size, it can
be said that IPSO is the best among the studied algorithms for
runs of up to 102 function evaluations. The data in Table III
show that IPSO finds the best median objective function values
for 11 out of the 12 functions used. IPSOLS and RLS find
the best solutions for 6 out of the 12 possible cases for runs
of up to 103 function evaluations; however, the best results
are distributed among all the tested algorithms. For 104 or
more function evaluations, algorithms that use local search are

the ones that find the best solutions (except for the Salomon
function). IPSOLS finds at least the same number of best
solutions as the other local search-based algorithms. For runs
of up to 1 million function evaluations, IPSOLS finds 8 out of
the 12 possible best median solutions.

Data from Figs. 3 and 4, and Table III suggest that in contrast
with constant population size PSO algorithms, the performance
of EPUS and IPSO does not depend so much on the duration
of a run. Both EPUS and IPSO compete with the best constant
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Fig. 4. Box plots show the distribution of the solution quality obtained with the compared algorithms for runs of up to 106 function evaluations. These results
correspond to the case in which a fully connected topology is used with all particle swarm-based algorithms. In the Griewank and Sphere functions, the solution
values obtained with the traditional PSO algorithm with 10 particles are so much higher than those obtained with the other algorithms that its box plot does
not appear. A symbol on top of a box plot denotes a statistically significant difference at the 5% level between the results obtained with the indicated algorithm
and those obtained with IPSO (in favor of IPSO, marked with a + symbol) or with IPSOLS (in favor of IPSOLS, marked with a × symbol). (a) Ackley.
(b) Axis-parallel Hyper-ellipsoid. (c) Extended Schaffer. (d) Griewank. (e) Penalized function. (f) Rastrigin. (g) Rosenbrock. (h) Salomon. (i) Schwefel. (j) Step.
(k) Sphere. (l) Weierstrass.

population size PSO algorithm at different run durations. This
is a strong point in favor of PSO algorithms that vary the popu-
lation size over time. However, the mechanism used for varying
the size of the population does have an impact on performance.
This can be seen in Table IV, which shows the number of
times IPSO performs at least as well (in a statistical sense) than
other PSO-based algorithms at different run durations. In total,
24 cases are considered, which are the result of summarizing

the results obtained on the 12 benchmark functions using both
the fully connected and ring topologies. Also, in Table IV, it
can be seen that IPSO dominates at least two of the constant
population size PSO algorithms at different run durations. For
runs of up to 105 function evaluations, the constant population
size PSO algorithms with 100 and 1000 particles are dominated.
For longer runs, the dominated algorithms are those with 10
and 1000 particles. This means that the performance of IPSO
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TABLE III
MEDIAN OBJECTIVE FUNCTION VALUES AT DIFFERENT RUN LENGTHS1

follows closely the performance of the best constant population
size PSO algorithm. Regarding the difference in performance
due to differences in the mechanism for varying the population
size, IPSO dominates EPUS for short runs. For long runs, IPSO
performs better or not worse than EPUS in half of the cases.

2) Use Versus No Use of Local Search: The local search
component plays a major role on the performance of the
algorithms that include it. Table III and Figs. 3 and 4 show
that for runs of at least 103 function evaluations, the quality
of the solutions obtained with the algorithms that include a
local search procedure is typically higher than the one of the
solutions obtained with the algorithms that do not. The only

case in which an algorithm without a local search component
(IPSO) dominates is when solving the Salomon function. Speed
is also affected by the use of a local search component. Table V
lists the first, second, and third quartiles of the algorithms’ run-
length distributions [53]. A hyphen in an entry indicates that the
target objective function value was not reached within the 106

function evaluations allocated for the experiments. Therefore,
if there is a hyphen in a third quartile entry, this means that at
least 25% of the runs did not find the target objective function
value. A similar reasoning applies if there is a hyphen in a
first or second quartile entry. The data in Table V show that
the algorithms that combine a variable population size with a
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TABLE IV
NUMBER OF TIMES IPSO PERFORMS EITHER BETTER OR NOT WORSE1

THAN OTHER PSO-BASED ALGORITHMS AT DIFFERENT RUN LENGTHS2

local search component (EPUSLS and IPSOLS) are the fastest
and most reliable among the studied algorithms. EPUSLS and
IPSOLS together are the fastest algorithms for 9 out of the 12
considered functions.

In terms of the quality of the solutions found by the lo-
cal search-based algorithms, IPSOLS outperforms EPUSLS as
seen in Tables III and VI. This last table shows the number of
times IPSOLS performs either better or not worse (in a statisti-
cal sense) than other PSO-local search hybrids at different run
durations.

The difference in performance between the constant popu-
lation size algorithms that we observed in the case when they
do not use local search, almost disappears when local search
is used. For runs of some hundreds of function evaluations,
IPSOLS performs no better than any other hybrid PSO–local
search algorithms (see first row in Table VI). This is because
Powell’s method has to perform at least n line searches (n is
the number of dimensions of the problem) before making any
significant improvement and because PSOLS first explores and
then invokes the local search component. However, for longer
runs, IPSOLS clearly dominates all other hybrid algorithms,
including EPUSLS.

IPSOLS is an algorithm that calls repeatedly a local search
procedure from different initial solutions. In this respect,
IPSOLS works in the same way as a random restart local search
algorithm (RLS). However, the main difference between RLS
and IPSOLS resides in the way the new initial solutions are cho-
sen. In RLS this choice is made at random; in IPSOLS it is the
result of the application of the PSO rules. Thus, a comparison
of the results obtained with these two algorithms can give us an
indication of the impact of the PSO component in IPSOLS. The
results presented in Fig. 4 indicate that IPSOLS outperforms
RLS in all problems except on Axis-parallel Hyper-ellipsoid,
Griewank, Penalized, Sphere and Weierstrass. In the case of
the Sphere function, the local search procedure alone is able
to find the optimum (with a solution value that is less than
or equal to 10−15, one of our stopping criteria). In the case
of the Griewank function, IPSOLS solves the problem with a
population of around 3 particles (data shown in [52]). Thus,
IPSOLS’s behavior is similar to that of RLS when its population
does not grow significantly (see, for example, Fig. 6).

As examples of the behavior of the algorithms over time,
consider Figs. 5 and 6, which show the solution development
over the number of function evaluations obtained by a selection
of the compared algorithms on the Rastrigin and Sphere func-
tions. In these figures, we also show the average population size
growth over time in IPSO, EPUS, EPUSLS, and IPSOLS.

In some cases, as was noted before, IPSOLS is outperformed
by other algorithms for short runs (in our case, runs between

102 and 103 function evaluations). However, IPSOLS improves
dramatically once the population size starts growing, as exem-
plified by the plots in Fig. 5 in which IPSOLS starts differentiat-
ing from RLS, EPUSLS and PSOLS after approximately 5000
function evaluations. IPSOLS improves rapidly once the local
search procedure begins to make progress, as seen in Fig. 6. In
this last figure, it can be seen that the populations in IPSOLS
and EPUSLS, when they are applied to the Sphere function, do
not grow. This explains the equivalence of IPSOLS, EPUSLS
and RLS on problems solvable by local search alone. In most
cases, the population growth in IPSOLS is independent of the
population topology used (data shown in [52]).

An exception in the conclusions of the analysis of the results
has been the Salomon function case. This function can be
thought of as a multidimensional wave that is symmetric in
all directions with respect to the optimum. We believe that the
poor performance of all the tested local search-based algorithms
is due to the undulatory nature of this function. When the
local search is invoked in the proximity of the global optimum,
valleys that are far away from it can actually attract the local
search method. This can “deceive” the global optimization
algorithm that calls the local search method. This phenomenon
seems to be exacerbated when Powell’s method is applied in
high dimensions.

From a practitioner’s point of view, there are at least two
advantages of using IPSOLS over a hybrid PSO algorithm:
1) IPSOLS does not require the practitioner to fix the population
size in advance hoping to have chosen the right size for his/her
problem, and 2) IPSOLS is more robust to the choice of the
population’s topology. The difference between the results ob-
tained through IPSOLS with a fully connected and with a ring
topology are smaller than the differences observed in the results
obtained through the hybrid algorithms (data shown in [52]).

VII. HOW USEFUL IS LEARNING SOCIALLY

ON INITIALIZATION?

Finally, we present the results of an experiment aimed at
measuring the effects of using the “vertical social learning” rule
(3) in IPSO as well as in IPSOLS.

In this section, we measure the extent to which the initial-
ization rule applied to new particles affects the quality of the
solution obtained after a certain number of function evaluations
with respect to a random initialization. For this purpose, IPSO
and IPSOLS are run with initialization mechanisms that induce
a bias of different strength toward the best particle of the swarm.
These mechanisms are (in increasing order of bias strength):
1) random initialization, 2) the initialization rule as defined in
(3) (labeled as “weak bias”), and 3) the same rule as defined
in (3), but with the random number U drawn from a uniform
distribution in the range [0.95, 1) (labeled as “strong bias”).

The experiments are carried out on problems derived from
the Rastrigin function, each of which has different fitness dis-
tance correlations (FDCs) [54]. Since the initialization rule used
in IPSO and IPSOLS implicitly assumes that good solutions are
close to each other, the hypothesis is that the performance of the
algorithms degrades as the problem’s FDC approaches zero and
that the rate of performance degradation is faster with stronger
initialization bias.
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TABLE V
FIRST, SECOND, AND THIRD QUARTILES OF THE NUMBER OF FUNCTION EVALUATIONS NEEDED TO FIND A TARGET SOLUTION VALUE1

TABLE VI
NUMBER OF TIMES IPSOLS PERFORMS EITHER BETTER OR NOT

WORSE1 THAN OTHER PSO-LOCAL SEARCH HYBRIDS AT

DIFFERENT RUN LENGTHS2

The Rastrigin function, whose n-dimensional formulation is
nA +

∑n
i=1(x

2
i − A cos(ωxi)), can be thought of as a parabola

with a superimposed (co)sine wave with an amplitude and
frequency controlled by parameters A and ω, respectively.
By changing the values of A and ω one can obtain a whole
family of problems. In our experiments, we set ω = 2π as is
usually done, and tuned the amplitude A to obtain functions
with specific FDCs. Other settings are the search range and the
dimensionality of the problem, which we set to [−5.12, 5.12]n
and n = 100, respectively. The amplitude and the resulting
FDCs (estimated using 104 uniformly distributed random sam-
ples over the search range) are shown in Table VII.

IPSO and IPSOLS with the three initialization rules de-
scribed above were run 100 times on each problem for up to 106

function evaluations. To measure the magnitude of the effect of
using one or another initialization scheme, we use Cohen’s d

statistic [55], which for the case of two samples is defined as
follows:

d =
μ̂1 − μ̂2

σpooled
(6)

with

σpooled =

√
(n1 − 1)σ̂1

2 + (n2 − 1)σ̂2
2

n1 + n2 − 2
(7)

where μ̂i and σ̂i are the mean and standard deviation of sample
i, respectively [56].

As an effect size index, Cohen’s d statistic measures the
difference between the mean responses of a treatment and
control groups expressed in standard deviation units [57]. The
treatment group is, in our case, the set of solutions obtained with
IPSO and IPSOLS using the initialization rule that biases the
position of a new particle toward the best particle of the swarm.
The control group is the set of solutions obtained with IPSO
and IPSOLS when new particles are initialized completely at
random. (Since in our case the lower the solution value the
better, the order of the operands in the subtraction is reversed.)
An effect size value of 0.8, for example, means that the average
solution found using the particles’ initialization rule is better
than 79% of the solutions found without using it. The practical
significance that the value associated to an effect has depends,
of course, on the situation under consideration; however, a value
of 0.8 can already be considered a large effect [55].



380 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 41, NO. 2, APRIL 2011

Fig. 5. Solution development over time obtained by a selection of the compared algorithms (PSO-based algorithms using a fully connected topology) on the
Rastrigin function. Results without local search (right plot). Results with local search (middle plot). Average population size growth in IPSO, EPUS, EPUSLS,
and IPSOLS (left plot).

Fig. 6. Solution development over time obtained by a selection of the compared algorithms (PSO-based algorithms using a fully connected topology) on the
Sphere function. Results without local search (right plot). Results with local search (middle plot). Average population size growth in IPSO, EPUS, EPUSLS, and
IPSOLS (left plot).

TABLE VII
AMPLITUDES USED IN THE RASTRIGIN FUNCTION TO

OBTAIN SPECIFIC FDCs

The observed effect sizes with 95% confidence intervals on
the solution quality obtained with IPSO and IPSOLS after 106

function evaluations are shown in Fig. 7.
In IPSO, the effects of using the new particles initialization

rule are very different from the ones in IPSOLS. In IPSO,
the weak bias initialization rule produces better results than
random initialization only in two cases: 1) when the problem’s
FDC is almost equal to one and the algorithm is run with a
ring topology, and 2) when the problem’s FDC is close to
zero irrespective of the population topology used. In all other
cases, the weak bias initialization rule produces results similar
to those obtained with a random initialization. The strong bias
initialization rule reports benefits only in the case of a high
FDC and a ring topology. In all other cases, it results in signif-
icantly worse solutions than the ones obtained with a random
initialization. The worst performance of IPSO with the strong
bias initialization rule is obtained when the problem’s FDC is
in the range (0.3, 0.6). This behavior is a consequence of the
new particle’s velocity being equal to zero, which effectively
reduces the particle’s initial exploratory behavior. Setting the
new particle’s initial velocity to a value different from zero
reduces the effect of the initialization bias because it would
immediately make the particle move to a quasi-random position

right after the first iteration of the algorithm’s PSO component.
The performance observed when the problem’s FDC is close
to zero is the result of the fact that with a fixed search range
and a high amplitude, the parabolic component of the Rastrigin
function has a much lower influence and many of the locally
optimal solutions are of the same quality, thus moving close to
or away from already good solutions has no major impact on
the solution quality.

While the effect in IPSO is positive only in a few cases, in
IPSOLS the effect size is not only positive in almost all cases
but it is also large. IPSOLS with the weak bias initialization
rule produces significantly better solutions than with a random
initialization in all but one case, which corresponds to the
situation where the problem’s FDC is close to one. When the
strong bias initialization rule is used, IPSOLS produces better
solutions than with random initialization when the problem’s
FDC is in the range (0.1, 1.0). In the range (0.4, 1.0), the
solutions obtained with a strong bias initialization rule are
better than or equal to those obtained with a weak bias initializa-
tion rule.

The fact that in IPSOLS using a random initialization of new
particles is effectively the same as initializing them with a bias
toward the location of the best particle of the swarm when the
problem’s FDC is almost one can be easily explained: under
these circumstances IPSOLS is a local search algorithm that
starts from a single solution. Since a local search algorithm
alone can solve a problem with an FDC close to one, no
population growth occurs and the initialization rule is never
used. The degradation of the effect size as the problem’s FDC
decreases can be observed in the range (0.0, 0.5) for the strong
bias initialization rule, and in the range (0.0, 0.3) for the weak
bias initialization rule. As hypothesized, the rate of degradation
is faster when using a strong bias.
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Fig. 7. Effect size of the new particles initialization rule, as measured using
Cohen’s d statistic with 95% confidence intervals (indicated by either error
bars or dashed lines), on the solution quality obtained with IPSO and IPSOLS
after 106 function evaluations. Two bias strengths are tested: 1) weak bias and
2) strong bias. The reference results (line at zero) are obtained with a random
initialization. (a) IPSO, Fully connected topology. (b) IPSO, Ring topology.
(c) IPSOLS, Fully connected topology. (d) IPSOLS, Ring topology.

In summary, the use of the weak bias initialization rule in
IPSOLS, which is the originally proposed vertical social learn-
ing rule, provides significant benefits over random initialization
on the family of problems we examined with a FDC in the
range (0, 1).

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown how the ISL framework, orig-
inally designed for facilitating the scalability of systems com-
posed of multiple learning agents, can be used for enhancing the
performance of population-based optimization algorithms. In
particular, we focused our attention on PSO algorithms because
of the solution quality versus speed tradeoff that they exhibit.
We analyzed and empirically evaluated two algorithms that are
the result of combining ISL and PSO ideas. The first one, IPSO,
is a PSO algorithm with a growing population size, in which
new particles are initialized biasing their initial position toward
the best-so-far solution. The second algorithm, IPSOLS, is
an extension of IPSO which implements “individual learning”
through a local search procedure.

In IPSOLS, which is the most competitive of these two
algorithms, the population size is increased if the optimization
problem at hand cannot be solved satisfactorily by local search
alone. That is, if a good-enough solution is found by local
search alone, the algorithm is stopped. As a consequence, the
number of particles remains constant as there is no need to
iterate through the PSO component of IPSOLS. However, if
the local search procedure does not find a satisfactory solution
within the maximum number of iterations allocated to it, a
new particle is added to the population and a form of “vertical
social learning” is simulated. This approach is effective because
if the problem is not so difficult, it may be solved by local
search alone. If the problem is difficult, a growing population
size will offer a better tradeoff between solution quality and
speed than a constant population size PSO-based algorithm.
The result is that, in effect, IPSOLS can adapt to the features
of the objective function. Further experimentation showed that
not only increasing the population size is beneficial but also
that the biased initialization of new particles results in improved
performance. The results presented in the paper show that the
effects of simulating the phenomenon of vertical social learning
are positive on problems of positive FDC.

Future work includes investigating effective methods for
dealing with bound and other kind of constraints, testing
whether invoking the local search procedure on the particles’
current positions can improve the algorithms’ performance,
and experimenting with other local search procedures such as
Powell’s NEWUOA or BOBYQA algorithms [58], [59]. Dif-
ferent particles using different local search algorithms may be
a way to tackle problems of the kind posed by the Salomon
function. An interesting line of research that has already pro-
duced some encouraging results, is the one of online parameter
adaptation in PSO algorithms (see, e.g., [60], [61]). We think
that an adaptive version of IPSO or IPSOLS, in which particles
are added or removed based on information gathered from the
search process, is worth exploring.

An important issue that needs to be addressed in the future
is the applicability of ISL to other population-based opti-
mization techniques. In principle, ISL can be used with any
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population-based optimization algorithm. It is not known, how-
ever, what features exactly those algorithms need to have so that
ISL can be of any advantage. For example, it is not straight-
forward to apply ISL to ant colony optimization algorithms
[62], which have a centralized memory structure that already
allows agents (in this case artificial ants) to share their search
experience with others.

In this paper, we have tackled optimization problems. Thus,
our conclusions only apply to this kind of problems. Fur-
ther research is needed to understand whether it is possible
to successfully use the incremental social learning frame-
work on traditional learning tasks such as classification or
prediction.

APPENDIX

NEW PARTICLES INITIALIZATION RULE EXACT

PROBABILITY DENSITY FUNCTION

The position of a newly added particle in IPSO and IPSOLS
can be seen as a random variable Z which is a function of
two independent continuous random variables X and Y . X
is a uniformly distributed random variable in the complete
initialization range [xmin, xmax), while Y is a uniformly dis-
tributed random variable in the range [0, 1). Z is defined as
follows:

Z = X + Y (c − X) (A.1)

where xmin ≤ c < xmax is a constant representing the location
of the attractor particle. For simplicity, we set xmin = 0 and
xmax = 1 in the analysis that follows.

The distribution function FZ of Z is given by

FZ(a) = P (Z ≤ a) =
∫∫

(x,y):x+y(c−x)≤a

f(x, y)dxdy (A.2)

where f(x, y) is the joint probability distribution of X and Y .
Since X and Y are independent, we have that

f(x, y) = fX(x)fY (y) =
1

xmax − xmin
(A.3)

where fX and fY are the marginal probability functions of X
and Y , respectively. This holds for xmin ≤ x < xmax and 0 ≤
y < 1.

Using (A.3) and considering that y = a − x/c − x, we can
rewrite (A.2) as follows:

FZ(a) =
1

xmax − xmin

xmax∫
xmin

ydx

=
1

xmax − xmin

xmax∫
xmin

a − x

c − x
dx. (A.4)

Equation (A.4) must be solved in two parts: when xmin ≤
x ≤ a < c and when c < a ≤ x < xmax. In the special case
when x = c, FZ(a) = c/(xmax − xmin) [see (A.1)].

When xmin ≤ x ≤ a < c, we obtain

FZ(a)=
1

xmax−xmin

a∫
xmin

a−x

c−x
dx

=
1

xmax−xmin

[
a+(a−c) ln

∣∣∣∣c−xmin

c−a

∣∣∣∣
]

. (A.5)

When c < a ≤ x < xmax, we obtain

FZ(a)=
1

xmax−xmin

⎡
⎣1−

xmax∫
a

a−x

c−x
dx

⎤
⎦

=
1

xmax−xmin

[
a+(a−c) ln

∣∣∣∣c−xmax

c−a

∣∣∣∣
]

. (A.6)

Hence, the probability density function fZ of Z is given by

fZ(z)=
d

dz
FZ(z)=

1
xmax−xmin

⎧⎨
⎩

ln
∣∣ c−xmin

c−z

∣∣ , if z<c
0, if z=c
ln

∣∣ c−xmax
c−z

∣∣ , if z>C.
(A.7)
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