
c© Marco Antonio Montes de Oca Roldán, 2005

Effects on clustering quality of direct and
indirect communication among agents in

ant-based clustering algorithms

Por

Ing. Marco Antonio Montes de Oca Roldán

TESIS

Presentada a la División de Electrónica, Computación, Información y Comunicaciones

como requisito parcial para obtener el grado académico de

Maestro en Ciencias en Sistemas Inteligentes

Instituto Tecnológico y de Estudios Superiores de Monterrey

Campus Monterrey

Monterrey, N.L. Mayo de 2005

Instituto Tecnológico y de Estudios Superiores de Monterrey

División de Graduados en Electrónica, Computación, Información
y Comunicaciones

Dirección de Programas de Posgrado en Electrónica, Computación,
Información y Comunicaciones

Los miembros del comité de tesis recomendamos que la presente tesis de
Marco Antonio Montes de Oca Roldán sea aceptada como requisito parcial para obtener el

grado académico de Maestro en Ciencias en:

Sistemas Inteligentes

Comité de tesis:

Dr. Leonardo Garrido Luna

Asesor de la tesis

Dr. José Luis Aguirre Cervantes

Sinodal

Dr. Ramón Felipe Brena Pinero

Sinodal

Dr. David Alejandro Garza Salazar

Director del Programa de Graduados
en Electrónica, Computación,
Información y Comunicaciones

Mayo de 2005

A Rosa Maŕıa Roldán Ramı́rez, mi querid́ısima mamá.

Acknowledgments

I’d like to thank all the people who have contributed directly or indirectly to the devel-

opment of this thesis. I’ll try not to omit any person involved nor their contributions, but if

someone feels I left him/her out of my list, I apologize.

First, I’d like to thank Dr. Leonardo Garrido for the freedom he gave me to find and

follow my own research interests. The discussions I held with him during my studies were

very helpful in my academic, professional and personal life. Thank you very much Leonardo.

I’d also like to thank Dr. Ramón Brena for letting me work in the Distributed Knowl-

edge and Intelligent Agents Research Group he leads. Although indirectly, he also gave me

the opportunity to find a thesis and research topic I really enjoyed working on. He served

as a member of my thesis committee, and I’d like to thank him all his suggestions for the

improvement of this work.

Dr. José Luis Aguirre as a member of my thesis committee, equally helped me to

improve this work. His enthusiasm was really encouraging during the writing of this thesis

and some of the papers derived from it.

I’d also like to thank all the losers of the Intelligent Systems Laboratory. A special

mention goes to (as they come to my mind): Richie, Carolina, Claudia, Alejandro, Marcelo,

Mike, César V., Eduardo, Erick, Alberto, Iñaki, René, Escoffie, Emmanuel, Chuy, and of

course, César Maŕın, my friend.

Even though she doesn’t belong to the losers group, I want to thank Tere for her sincere

friendship. Thank you.

Finally, I’d like to thank the Monterrey Institute of Technology for the scholarship that

made this thesis possible and allowed me to meet all these nice people.

Marco Antonio Montes de Oca Roldán

Instituto Tecnológico y de Estudios Superiores de Monterrey

May 2005

V

Effects on clustering quality of direct and

indirect communication among agents in

ant-based clustering algorithms

Marco Antonio Montes de Oca Roldán, M.C.

Instituto Tecnológico y de Estudios Superiores de Monterrey, 2005

Thesis advisor: Dr. Leonardo Garrido Luna

Ant-based clustering algorithms are knowledge discovery tools inspired by the collective

behavior of social insect colonies. In these algorithms, insects are modeled as software agents

that communicate with each other indirectly through the environment. This particular kind

of communication is known as stigmergic communication.

In the classic ant-based clustering algorithm, a group of agents that exhibit the same

behavior move randomly over a toroidal square grid. In the environment there are data

objects that were initially scattered in a random fashion. The objects can be picked up,

moved or dropped in any free location on the grid. An object is picked up with high

probability if it is not surrounded by similar objects and is dropped with high probability if

an agent’s neighborhood is densely populated by other similar objects and its location is free.

Here, stigmergy occurs when an object is placed next to another. The resultant structure is

much more attractive to agents to drop other similar objects nearby.

However, stigmergy is not the only way social insects interact with each other. In most

species, trophallaxis or liquid food exchange among members of the same colony, plays a key

role in their social organization. Consider the case of some termite species which require

intestinal protozoa to derive benefits from cellulose. Their early instar nymphs are fed either

by oral or anal trophallaxis. The latter infects them with symbiotic protozoa or bacteria

contained in the proctodeal liquid. The subsocial association result of this codependence

have evolved into a complex social and morphological structure.

Inspired by the trophallaxis phenomenon observed in some ant and termite species,

two different communication strategies among agents in ant-based clustering algorithms are

investigated: (i) direct and (ii) indirect communication. The impact on the final clustering

quality is evaluated by comparing the development of the clustering process generated by

each strategy. It is shown that benefits on the final clustering are directly related to the

usefulness of the exchanged information, its use, and on the number of participating agents.

Contents

Acknowledgments V

Abstract VI

List of Tables XI

List of Figures XII

List of Algorithms XVII

Chapter 1 Introduction 1

1.1 Problem definition . 3

1.2 Research Objectives . 4

1.2.1 Main objective . 4

1.2.2 Particular objectives . 4

1.3 Hypothesis . 5

1.3.1 Research questions . 5

1.4 Thesis organization . 5

Chapter 2 Data Clustering 7

2.1 Clustering Problem . 7

2.1.1 Definition . 7

2.2 Components of a Clustering Task . 8

2.3 Data Representation . 9

2.3.1 Classification Based on Domain Size 9

2.3.2 Classification Based on the Measurement Scale 9

2.4 Proximity Measures . 10

2.4.1 Standardization . 10

2.4.2 Proximity Measures for Quantitative Data 11

2.4.3 Proximity Measures for Qualitative Data 13

2.4.4 Proximity Measures for Ordinal-Scaled Data 15

2.4.5 Proximity Measures for Mixtures of Qualitative and Quantitative Data 16

2.5 Clustering Techniques . 16

VII

2.5.1 Hierarchical Methods . 16

2.5.2 Divisive Methods . 21

2.5.3 Optimization Methods . 22

Chapter 3 Ant-Based Clustering Algorithms 25

3.1 Cemetery Organization, Brood Sorting and Nest Building 25

3.2 Spatial Aggregation and Sorting . 26

3.2.1 Spatial Aggregation . 26

3.2.2 Spatial Sorting . 27

3.3 Exploratory Data Analysis . 28

3.4 Engineered Ant-Based Clustering Algorithms 30

3.4.1 Ant-Based Clustering Quality Assessment 31

Chapter 4 Direct communication among agents in ant-based clustering al-

gorithms 35

4.1 Direct communication strategies . 35

4.2 Experimental Setup . 36

4.2.1 Test Data . 36

4.2.2 Agent Models . 37

4.2.3 Experiments Design . 42

4.3 Results of Experiments on Information Exchange for Environment Represen-

tation Updates . 43

4.3.1 F -Measure . 43

4.3.2 Rand Statistic . 45

4.3.3 Intra-cluster Variance . 48

4.3.4 Dunn index . 51

4.3.5 Number of clusters . 52

4.4 Results of Experiments on Information Exchange for Behavior Changes . . . 54

4.4.1 F -Measure . 55

4.4.2 Rand Statistic . 57

4.4.3 Intra-cluster Variance . 59

4.4.4 Dunn index . 62

4.4.5 Number of clusters . 64

4.5 Discussion of Results . 67

4.6 Conclusions . 68

Chapter 5 Intentional indirect communication among agents in ant-based

clustering algorithms 71

5.1 Indirect communication strategies . 71

5.2 Experimental Setup . 72

5.2.1 Experiments Design . 72

VIII

5.3 Results of Experiments on Information Exchange for Environment Represen-

tation Updates using a Periodic Laying Policy 72

5.3.1 F -Measure . 72

5.3.2 Rand Statistic . 74

5.3.3 Intra-cluster Variance . 76

5.3.4 Dunn index . 78

5.3.5 Number of clusters . 80

5.4 Results of Experiments on Information Exchange for Behavior Changes using

a Periodic Laying Policy . 83

5.4.1 F -Measure . 83

5.4.2 Rand Statistic . 85

5.4.3 Intra-cluster Variance . 87

5.4.4 Dunn index . 89

5.4.5 Number of clusters . 91

5.5 Results of Experiments on Information Exchange for Environment Represen-

tation Updates using an Adaptive Laying Policy 93

5.5.1 F -Measure . 94

5.5.2 Rand Statistic . 95

5.5.3 Intra-cluster Variance . 97

5.5.4 Dunn index . 99

5.5.5 Number of clusters . 101

5.6 Results of Experiments on Information Exchange for Behavior Changes using

an Adaptive Laying Policy . 103

5.6.1 F -Measure . 104

5.6.2 Rand Statistic . 106

5.6.3 Intra-cluster Variance . 107

5.6.4 Dunn index . 109

5.6.5 Number of clusters . 111

5.7 Discussion of Results . 113

5.7.1 Periodic Laying Policy . 114

5.7.2 Adaptive Laying Policy . 114

5.8 Conclusions . 115

Chapter 6 Conclusions 117

6.1 Direct information exchange . 118

6.1.1 When used for updating environment representations 119

6.1.2 When used for changing dropping spot search trajectories 119

6.2 Indirect information exchange . 119

6.2.1 When used for updating environment representations 120

6.2.2 When used for changing dropping spot search trajectories 120

IX

6.3 Discussion . 120

6.4 Contributions . 121

6.4.1 Publications derived from the work on this thesis 123

6.5 Future Work . 124

Bibliography 125

Vita 129

X

List of Tables

2.1 Sensitiveness of proximity measures to additive and proportional translations . . . 14

2.2 Counts of binary outcomes for two individuals 14

2.3 Similarity measures for binary data . 15

2.4 Quality measures of the mth group containing nm data. These measures are based
on a dissimilarity matrix ∆ with elements δql,kv measuring the dissimilarity between
the lth object in the qth group and the vth element of the kth group 23

4.1 Agent settings for direct communication experiments 39

4.2 Embedded growing neural gas networks settings 39

6.1 Contributions to the state of the art in ant-based clustering algorithms 122

6.2 Publications derived from this work . 123

XI

List of Figures

1.1 External view of a termite mound of genera Macrotermes 2

2.1 Example of an agglomerative clustering on a data collection. 18

2.2 Inter-cluster distance measure for the single linkage method. 19

2.3 Inter-cluster distance measure for the complete linkage method. 19

2.4 Inter-cluster distance measure for the average linkage method. 20

3.1 Probability of picking an object as a function of k1 and f in Deneubourg’s model. 27

3.2 Probability of dropping an object as a function of k2 and f in Deneubourg’s model. 28

4.1 Response surface of the similarity function used in all our experiments. . . . 38

4.2 Voronoi diagram of a set of 6 nodes in the plane. 40

4.3 Voronoi diagram of a set of 3 nodes in the plane. 40

4.4 Superimposition of two Voronoi diagrams. 41

4.5 Network update as a result of two superimposed Voronoi diagrams. 41

4.6 Voronoi diagram of the resultant network. 42

4.7 F -Measure scores over time for all tested algorithms on the Iris Plant and the

Wine databases using 10 agents. Representation Updates Case. 44

4.8 F -Measure scores over time for all tested algorithms on the Iris Plant and the

Wine databases using 30 agents. Representation Updates Case. 45

4.9 Rand statistic scores over time for all tested algorithms on the Iris Plant and

the Wine databases using 10 agents. Representation Updates Case. 46

4.10 Rand statistic scores over time for all tested algorithms on the Iris Plant and

the Wine databases using 30 agents. Representation Updates Case. 47

4.11 Total intra-cluster variance over time for all tested algorithms on the Iris Plant

and the Wine databases using 10 agents. Representation Updates Case. . . . 48

4.12 Total intra-cluster variance over time for all tested algorithms on the Iris Plant

and the Wine databases using 30 agents. Representation Updates Case. . . . 49

4.13 Dunn index score over time for all tested algorithms on the Iris Plant and the

Wine databases using 10 agents. Representation Updates Case. 50

4.14 Dunn index score over time for all tested algorithms on the Iris Plant and the

Wine databases using 30 agents. Representation Updates Case. 51

XII

4.15 Number of found clusters over time for all tested algorithms on the Iris Plant

and the Wine databases using 10 agents. Representation Updates Case. . . . 53

4.16 Number of found clusters over time for all tested algorithms on the Iris Plant

and the Wine databases using 30 agents. Representation Updates Case. . . . 54

4.17 F -Measure scores over time for all tested algorithms on the Iris Plant and the

Wine databases using 10 agents. Behavior Changes Case. 56

4.18 F -Measure scores over time for all tested algorithms on the Iris Plant and the

Wine databases using 30 agents. Behavior Changes Case. 57

4.19 Rand statistic scores over time for all tested algorithms on the Iris Plant and

the Wine databases using 10 agents. Behavior Changes Case. 58

4.20 Rand statistic scores over time for all tested algorithms on the Iris Plant and

the Wine databases using 30 agents. Behavior Changes Case. 59

4.21 Total intra-cluster variance over time for all tested algorithms on the Iris Plant

and the Wine databases using 10 agents. Behavior Changes Case. 60

4.22 Total intra-cluster variance over time for all tested algorithms on the Iris Plant

and the Wine databases using 30 agents. Behavior Changes Case. 61

4.23 Dunn index scores over time for all tested algorithms on the Iris Plant and

the Wine databases using 10 agents. Behavior Changes Case. 63

4.24 Dunn index scores over time for all tested algorithms on the Iris Plant and

the Wine databases using 30 agents. Behavior Changes Case. 64

4.25 Number of found clusters over time for all tested algorithms on the Iris Plant

and the Wine databases using 10 agents. Behavior Changes Case. 65

4.26 Number of found clusters over time for all tested algorithms on the Iris Plant

and the Wine databases using 30 agents. Behavior Changes Case. 66

5.1 F -Measure scores over time for all tested algorithms on the Iris Plant and

the Wine databases using 10 agents. Representation Updates Case. Periodic

Laying Policy. 73

5.2 F -Measure scores over time for all tested algorithms on the Iris Plant and

the Wine databases using 30 agents. Representation Updates Case. Periodic

Laying Policy. 74

5.3 Rand statistic scores over time for all tested algorithms on the Iris Plant and

the Wine databases using 10 agents. Representation Updates Case. Periodic

Laying Policy. 75

5.4 Rand statistic scores over time for all tested algorithms on the Iris Plant and

the Wine databases using 30 agents. Representation Updates Case. Periodic

Laying Policy. 76

5.5 Total intra-cluster variance scores over time for all tested algorithms on the

Iris Plant and the Wine databases using 10 agents. Representation Updates

Case. Periodic Laying Policy. 77

XIII

5.6 Total intra-cluster variance scores over time for all tested algorithms on the

Iris Plant and the Wine databases using 30 agents. Representation Updates

Case. Periodic Laying Policy. 78

5.7 Dunn index scores over time for all tested algorithms on the Iris Plant and

the Wine databases using 10 agents. Representation Updates Case. Periodic

Laying Policy. 79

5.8 Dunn index scores over time for all tested algorithms on the Iris Plant and

the Wine databases using 30 agents. Representation Updates Case. Periodic

Laying Policy. 80

5.9 Number of found clusters over time in the Iris Plant and Wine databases using

10 agents. Representation Updates Case. Periodic Laying Policy. 81

5.10 Number of found clusters over time in the Iris Plant and Wine databases using

30 agents. Representation Updates Case. Periodic Laying Policy. 82

5.11 F -Measure scores over time for all tested algorithms on the Iris Plant and the

Wine databases using 10 agents. Behavior Changes Case. Periodic Laying

Policy. 84

5.12 F -Measure scores over time for all tested algorithms on the Iris Plant and the

Wine databases using 30 agents. Behavior Changes Case. Periodic Laying

Policy. 85

5.13 Rand statistic scores over time for all tested algorithms on the Iris Plant and

the Wine databases using 10 agents. Behavior Changes Case. Periodic Laying

Policy. 86

5.14 Rand statistic scores over time for all tested algorithms on the Iris Plant and

the Wine databases using 30 agents. Behavior Changes Case. Periodic Laying

Policy. 87

5.15 Total intra-cluster variance scores over time for all tested algorithms on the

Iris Plant and the Wine databases using 10 agents. Behavior Changes Case.

Periodic Laying Policy. 88

5.16 Total intra-cluster variance scores over time for all tested algorithms on the

Iris Plant and the Wine databases using 30 agents. Behavior Changes Case.

Periodic Laying Policy. 89

5.17 Dunn index scores over time for all tested algorithms on the Iris Plant and

the Wine databases using 10 agents. Behavior Changes Case. Periodic Laying

Policy. 90

5.18 Dunn index scores over time for all tested algorithms on the Iris Plant and

the Wine databases using 30 agents. Behavior Changes Case. Periodic Laying

Policy. 91

5.19 Number of found clusters over time in the Iris Plant and Wine databases using

10 agents. Behavior Changes Case. Periodic Laying Policy. 92

XIV

5.20 Number of found clusters over time in the Iris Plant and Wine databases using

30 agents. Behavior Changes Case. Periodic Laying Policy. 93

5.21 F -Measure scores over time for all tested algorithms on the Iris Plant and

the Wine databases using 10 agents. Representation Updates Case. Adaptive

Laying Policy. 94

5.22 F -Measure scores over time for all tested algorithms on the Iris Plant and

the Wine databases using 30 agents. Representation Updates Case. Adaptive

Laying Policy. 95

5.23 Rand statistic scores over time for all tested algorithms on the Iris Plant and

the Wine databases using 10 agents. Representation Updates Case. Adaptive

Laying Policy. 96

5.24 Rand statistic scores over time for all tested algorithms on the Iris Plant and

the Wine databases using 30 agents. Representation Updates Case. Adaptive

Laying Policy. 97

5.25 Total intra-cluster variance scores over time for all tested algorithms on the

Iris Plant and the Wine databases using 10 agents. Representation Updates

Case. Adaptive Laying Policy. 98

5.26 Total intra-cluster variance scores over time for all tested algorithms on the

Iris Plant and the Wine databases using 30 agents. Representation Updates

Case. Adaptive Laying Policy. 99

5.27 Dunn index scores over time for all tested algorithms on the Iris Plant and

the Wine databases using 10 agents. Representation Updates Case. Adaptive

Laying Policy. 100

5.28 Dunn index scores over time for all tested algorithms on the Iris Plant and

the Wine databases using 30 agents. Representation Updates Case. Adaptive

Laying Policy. 101

5.29 Number of found clusters over time in the Iris Plant and Wine databases using

10 agents. Representation Updates Case. Adaptive Laying Policy. 102

5.30 Number of found clusters over time in the Iris Plant and Wine databases using

30 agents. Representation Updates Case. Adaptive Laying Policy. 103

5.31 F -Measure scores over time for all tested algorithms on the Iris Plant and the

Wine databases using 10 agents. Behavior Changes Case. Adaptive Laying

Policy. 104

5.32 F -Measure scores over time for all tested algorithms on the Iris Plant and the

Wine databases using 30 agents. Behavior Changes Case. Adaptive Laying

Policy. 105

5.33 Rand statistic scores over time for all tested algorithms on the Iris Plant

and the Wine databases using 10 agents. Behavior Changes Case. Adaptive

Laying Policy. 106

XV

5.34 Rand statistic scores over time for all tested algorithms on the Iris Plant

and the Wine databases using 30 agents. Behavior Changes Case. Adaptive

Laying Policy. 107

5.35 Total intra-cluster variance scores over time for all tested algorithms on the

Iris Plant and the Wine databases using 10 agents. Behavior Changes Case.

Adaptive Laying Policy. 108

5.36 Total intra-cluster variance scores over time for all tested algorithms on the

Iris Plant and the Wine databases using 30 agents. Behavior Changes Case.

Adaptive Laying Policy. 109

5.37 Dunn index scores over time for all tested algorithms on the Iris Plant and the

Wine databases using 10 agents. Behavior Changes Case. Adaptive Laying

Policy. 110

5.38 Dunn index scores over time for all tested algorithms on the Iris Plant and the

Wine databases using 30 agents. Behavior Changes Case. Adaptive Laying

Policy. 111

5.39 Number of found clusters over time in the Iris Plant and Wine databases using

10 agents. Behavior Changes Case. Adaptive Laying Policy. 112

5.40 Number of found clusters over time in the Iris Plant and Wine databases using

30 agents. Behavior Changes Case. Adaptive Laying Policy. 113

XVI

List of Algorithms

1 Lumer and Faieta’s basic ant-based clustering algorithm 29

2 Handl et al.’s basic ant-based clustering algorithm 32

XVII

Chapter 1

Introduction

Collective complexity out of numerous interactions among simple individuals is the

way we can explain how an eusocial insects colony works. To be considered eusocial, insect

species must have overlapping generations of parents and offspring living together in an

organizational unit or colony, division of labor occurs within the colony, and when they

develop a physical structure or nest to live in. Ants, termites and some bee and wasp

species are considered eusocial [8]. At a “macroscopic” level the colony seems to be a living

organism by itself; nevertheless, it is made of thousands or millions of autonomous creatures

interacting with each other with no central entity controlling their organization. In other

words, they self-organize [16].

Bonabeau et al. [4] define self-organization as “a set of dynamical mechanisms whereby

structures appear at the global level of a system from interactions among its lower-level

components” (p. 9). They also identify four basic elements of self-organization, which are

positive feedback, negative feedback, the amplification of fluctuations, and the existence of

multiple interactions among the constituents of a system. Self-organization is, in other words,

the emergence of spatial and temporal patterns from local interactions among relatively

simple entities in an initially homogeneous environment. Termite mounds are good examples

of what can be achieved via self-organization. An external view of a termite mound of genera

Macrotermes is shown in figure 1.1.

Termite mounds are thousands of times bigger than the size of a single termite. There-

fore, they must work together, even across various generations, to complete such an aston-

ishing structure. But, how do they coordinate the construction of nests without blueprints

or a hierarchical work organization? They use stigmergy, an indirect nonintentional commu-

nication mechanism through local modifications of the environment.

In eusocial insects different activities are performed simultaneously by specialized indi-

viduals. This division of labor can be seen in activities such as nest cleaning and brood care.

An example of such behavior can be seen in some ant species such as Pogonomyrmex badius

and Lasius niger whose workers pile corpses of dead nestmates and defeated enemies on a

distant spot away from their nest entrance [25,4]. Another example is brood care, which is a

highly specialized activity that require, in some cases, the separation of larvae according to

their development stage. In experiments, the ant Leptothorax unifasciatus gather its larvae

1

Figure 1.1: External view of a termite mound of genera Macrotermes

together according to their size. Small larvae are aggregated near the center of a plate and

larger larvae near the periphery of it [4].

Collective behaviors of social insects have inspired the design of several computational

techniques for solving different kinds of problems. The idea is to use the same principles of

self-organization that exist in social insects to coordinate populations of artificial agents that

collaborate to solve computational problems [7]. Different behaviors of social insect colonies

have inspired the design of heuristic algorithms to solve certain problems. For example,

brood sorting and cemetery organization in some ant colonies have inspired the design of

data clustering algorithms. The relatively new discipline of Swarm Intelligence studies these

algorithms and their applications. Swarm Intelligence can be situated somewhere between

multiagent systems and evolutionary computing.

Swarm systems were first studied in robotics [3]. In multiagent systems, swarms are

composed of a multitude of simple agents with no central control over the their behavior,

instead, they self-organize. Swarm systems offer some advantages over their deliberative

counterparts, among others: robustness, flexibility, scalability and adaptability [21]. One

key factor that makes swarm systems appealing is that the system’s entities are simple.

In this context, simple means that an agent’s behavior is not based on explicit symbolic

representations of its environment or other agents.

In “ant algorithms”, as they have been labeled, agents coordinate their activities with-

out direct communication. Instead, they use stigmergy. In classic ant-based clustering

algorithms there is no direct interactions among agents; however, if we look again to the ins-

piration source, we will see that direct interaction does happen among insects. For example,

in most termite species, trophallaxis or liquid food exchange among members of the same

colony, plays a key role in their social organization [25]. Consider the case of some termite

species which require intestinal protozoa to derive benefits from cellulose. Their early instar

nymphs are fed either by oral or anal trophallaxis. The latter infects them with symbiotic

2

protozoa or bacteria contained in the proctodeal liquid. The subsocial association result of

this codependence have evolved into a complex social and morphological structure [8].

This thesis will focus on ant-based clustering algorithms, and inspired by trophallaxis,

the main hypothesis is that if we allow agents to exchange local information about the state

of the environment, the clustering performance can be improved both in speed and quality.

1.1 Problem definition

The problem to be solved falls within the study area of Swarm Intelligence. According

to Bonabeau et al. [4], Swarm Intelligence is “any attempt to design algorithms or distributed

problem-solving devices inspired by the collective behavior of social insect colonies and other

animal societies” (p. 7).

To understand how algorithms have been designed using as inspiration the collective

behavior of social insects colonies, let us consider the foundation of a termite nest. A termite

nest is founded when a winged female lands on soil and starts expelling pheromones to attract

males. The new couple make a hole in a tree or a subterranean camera in which the first

eggs are laid [24]. As the colony grows, termites start building pillars and tunnels through

the accumulation of soil pellets.

The inspiring behavior for clustering through artificial termites is the pillar building

behavior. The insects carry about and put down pellets in an apparently random fashion

after an exploration phase in which they move without taking any action. At this stage, a

pellet just put down by a termite worker is often picked up and placed somewhere else by

another worker. When a pellet is placed on top of another, the resultant structure appears

to be much more attractive and termites soon start piling more pellets nearby, making the

dropping spot even more attractive [25].

In the clustering algorithm inspired by this behavior, there is an artificial environment,

usually a toroidal square grid, with randomly located data elements1 and a number of un-

loaded agents moving randomly over it. Each agent picks up or drops a datum with a

probability that depends on the model being used. All models are based on the idea that

a sufficiently compact data group is more attractive for agents to drop data elements on it

than to pick elements from it. At the same time, isolated elements are easily picked up. Most

algorithms assume that two or more agents can be in the same location simultaneously and

that they do not interact while being there. The environment is the only mean of interaction

among agents.

The assumptions just mentioned artificially impose restrictions on the agents’ behavior

that need not be there. One of them is that agents are “blind”, i.e., they move randomly

over the grid and may waste too much time searching in unpopulated areas affecting the

convergence speed of the algorithm. Another restriction is that agents may miss the point

1I also use the terms “data objects”, “data elements”, or simply “objects” throughout this thesis, to refer
to elements belonging to a patterns database.

3

of their task, i.e., they may drop objects in areas populated by half-way similar objects,

affecting the final clustering quality.

The problem of convergence speed is mentioned and studied in references [12,16,4], but

the issue of communication among agents in ant-based clustering algorithms has not been

studied before. In this thesis we propose to explore the effects of letting agents communicate

in ant-based clustering algorithms. The rationale is: if agents exchange information about

data distribution on the grid, they no longer are blind2 and therefore the convergence time

is reduced and the final clustering quality improved. In experiments, the performance ef-

fects of this modification will be measured and compared with the same algorithm without

communication.

1.2 Research Objectives

The main research objective can be accomplished by subdividing it into two particular

objectives. These are specified in the following subsections.

1.2.1 Main objective

The main objective of this thesis is:

To determine the performance effects of direct and intentional indirect (in contrast to just

the stigmergic one) communication among agents in ant-based clustering algorithms. The

content of the communication is local knowledge about the spatial distribution of data ele-

ments and their data types in the environment. The ultimate goal for information exchange

is to let agents choose the best location on the environment on which to drop a data object,

and therefore create better clusters faster than with noncommunicating agents.

1.2.2 Particular objectives

To satisfy the objective stated above, the effect in convergence time and clustering

quality of the following communication strategies will be determined:

• Direct communication. The effects of direct information exchange among agents will

be determined. The communication will occur whenever two or more agents simulta-

neously meet at a point on the grid that serves as environment.

• Indirect communication. Agents will communicate indirectly through information

packets dropped on the environment. This is intentional communication, not just

stigmergic.

2However, they do not get full observability of the environment since agents exchange local information

4

1.3 Hypothesis

The hypothesis of this thesis is:

In ant-based clustering algorithms, it is possible to reduce convergence time and improve

clustering quality by letting agents exchange information about the spatial distribution of

data and their type.

1.3.1 Research questions

The questions this thesis seek to answer are:

1. What are the performance effects, if any, of direct and indirect communication among

agents in ant-based clustering algorithms?

2. How much knowledge is it possible to exchange without negatively affect the perfor-

mance of ant-based clustering algorithms?

3. What kind of knowledge is it possible to exchange?

4. What are the advantages of direct and indirect communication among agents in ant-

based clustering algorithms?

1.4 Thesis organization

The rest of this thesis is organized as follows. Chapter 2 presents background knowl-

edge about the application problem, that is, data clustering. Chapter 3 presents background

knowledge about ant-based clustering algorithms. Chapter 4 presents our experimental de-

sign and results using direct communication among agents. In chapter 5, we present the

experimental design and results using intentional indirect communication among agents. In

chapter 6, obtained results are discussed and the final conclusions drawn from them are

presented.

5

6

Chapter 2

Data Clustering

In this chapter, basic definitions of the problem of data clustering are given. The

problem of data representation and the notion of similarity between multivariate data are

discussed. Finally, traditional approaches to clustering are described.

2.1 Clustering Problem

There are two types of data analysis, exploratory and confirmatory [18]. In exploratory

data analysis the researcher wants to discover the relationships among data elements in a

data set. In confirmatory studies, the researcher wants to see how well a model fits the data.

We can locate cluster analysis into the first category. Cluster analysis helps us discover

natural groups within data.

The goal of cluster analysis is to partition a set of data or objects into clusters (groups,

subsets, classes) so that elements belonging to the same cluster are as similar as possible and

elements that belong to different clusters are as dissimilar as possible [17].

2.1.1 Definition

Hoppner et al. [17] define the analysis space (the space of possible solutions to a clus-

tering problem) as

Let D 6= φ be a set and R a set of sets with (|R| ≥ 2)∨ (∃r ∈ R : |r| ≥ 2). We call D a data

space and R a result space. Then, A(D, R) := {f |f : X → K, X ⊆ D, X 6= φ,K ∈ R} is

called an analysis space. A mapping f : X → K ∈ A(D, R) represents the result of a data

analysis by the mapping of a special, given set of data X ⊆ D to a possible result K ∈ R.

In order to establish a criterion to select among all the possible solutions, they also define

an objective function as

Let A(D, R) be an analysis space. Then, a mapping J : A(D, R) → < is called an objective

function of the analysis space.

The value J(f) can also be considered a quality measure that can be used to compare

7

different solutions for the same problem.

A cluster partition is defined as

Let A(D, R) be an analysis space, X ⊆ D, f : X → K ∈ A(D, R), Ak := f−1(k) for k ∈ K.

Then, f is called a cluster partition if {Ak|k ∈ K} is a (hard) partition of X, that is,⋃
i∈K Ak = X

∀i, j ∈ K : i 6= j ⇒ Ai ∩ Aj = φ

∀i ∈ K : φ 6= Ai 6= X

Although Hoppner et al. [17] do not define the clustering problem explicitly, we can use

the concepts defined above to state it as

Let C be a set of partitions of X ⊆ D, with C ∈ A(D, R). The clustering problem consists

in finding a copt ∈ C such that J(copt) = max{J(c)|c ∈ C}

2.2 Components of a Clustering Task

According to Andritsos [2] and Jain et al. [18], the components of a clustering task are:

1. Data Collection. This subtask includes the selection of relevant data objects from

among different sources. The data objects select must provide information relevant to

the clustering task. It is goal-driven.

2. Initial screening. This subtask includes the transformation of data in order to be

properly used by the representation scheme and by the clustering method selected.

3. Pattern Representation. This subtask is composed of feature extraction/selection and

selects a suitable form for the data to be processed by the clustering algorithm.

4. Definition of a similarity/dissimilarity measure. Depending on the data representation,

the similarity or dissimilarity measure is selected. In this stage, one can incorporate

background knowledge.

5. Application of a clustering method. Includes the selection of proper parameters and

strategy for the clustering algorithm.

6. Assessment of output. There are three types of validation studies. An external as-

sessment compares the output of a clustering algorithm to an a priori partition. An

internal validation tries to determine if the recovered structure is appropriate for the

data. A relative test compares two structures and measures their relative quality.

7. Data abstraction. This stage includes the combination of clustering results with other

studies to draw conclusions or decisions.

8

2.3 Data Representation

Data objects can be represented through their characteristics or attributes. Depending

on the characteristic they are describing, attributes can be of different data types. In [2] it

can be found a categorization of the different types of variables that model data objects at-

tributes. The classification is based on two schemes: the Domain Size and the Measurement

Scale.

2.3.1 Classification Based on Domain Size

This classification distinguishes data objects based on the size of their domain, i.e., the

number of distinct values the data objects may assume. According to [2] the classes available

are:

1. An attribute is continuous if its domain is uncountably infinite, i.e., if its elements

cannot be associated one-to-one with the set of positive integers.

2. An attribute is discrete if its domain is a finite set, i.e., if its elements can be put

into a one-to-one correspondence with a finite subset of the positive integers. Binary

attributes are a particular case of discrete attributes that have only two discrete values

in their domain.

2.3.2 Classification Based on the Measurement Scale

This classification distinguishes attributes according to their measurement scales. Ac-

cording to [2] the classes available are:

1. A nominal scale distinguishes among categories. They are a generalization of binary

attributes with a domain of more than two discrete values.

2. An ordinal scale involves a nominal scale with the additional feature that their values

can be totally ordered.

3. An interval scale measures values in a linear scale. This allows to not only totally

ordered values, but it can also establish distances among these values.

4. A ratio scale is an interval scale with a meaningful zero point.

Nominal and ordinal scaled attributes are called qualitative or categorical attributes.

Interval and ratio scaled are called quantitative.

9

2.4 Proximity Measures

A notion of central importance to clustering is that of proximity. There are two types

of proximity measures, similarity and dissimilarity measures. Possible definitions for these

measures depend on the attributes data types of the data objects to be clustered. The

discussion of proximity measures is based on the work of Everitt et al. [9].

2.4.1 Standardization

Standardization is a transformation on data so that the effects on proximity measures

of different measure scales on attributes is eliminated. Attributes of a data object may

have different measurement units. For example, one can measure time in years, days, hours,

seconds or milliseconds. The selection of units can have a tremendous influence on proximity

measures by making attributes with large standard deviations weight more and thus, biasing

the result. To compensate this effect one can standardize the data set.

Standardizing functions

If the collection of data objects is arranged in a m × n data matrix with data objects

subscripted i = 1, 2, 3, . . . ,m and attributes subscripted j = 1, 2, 3, . . . , n , then the matrix

can be standardized using

Zij =
Xij −Xj

Sj

(2.1)

where

Xj =
1

m

m∑
i=1

Xij

and

Sj =

(
1

m− 1

m∑
i=1

(Xij −Xj)
2

)1/2

It is important to notice that standardized values Zij are unitless and that Zj = 0 and

the standard deviation S ′
j = 1. Because of this, all values Zij are likely to be in the range of

−2.0 ≤ Zij ≤ 2.0.

There are other standardizing functions that transform entries in the unstandardized

data matrix into values in the range 0 ≤ Zij ≤ 1. To use these functions, all the values Xij

must be nonnegative and no column can be all zeros.

The first of these functions is

Zij =
Xij

MAXj

(2.2)

where MAXj is the maximum value in the jth column of the data matrix. As a result, every

column will have at least one element Zij = 1 which will occur when Xij = MAXj.

10

The second standardizing function is

Zij =
Xij −MINj

MAXj −MINj

(2.3)

where MAXj is the maximum value in the jth column of the data matrix as before, and

MINj is the minimum value in the jth column. In this case, every column will have at least

one value Zij = 0 that will occur when Xij = MINj and at least one value Zij = 1 which

will occur when Xij = MAXj.

The third function normalizes the standardized values in the jth column so that they

sum 1. This function is

Zij =
Xij

m∑
i=1

Xij

(2.4)

2.4.2 Proximity Measures for Quantitative Data

Proximity measures for quantitative data can be differentiated by their sensitiveness to

certain data transformations. Such transformations are:

Additive translation. For a given data profile p in a data set, another data profile p′ is

defined by p′ = p + c where c is a constant vector.

Proportional translation. For a given data profile p in a data set, another data profile

p′ is defined by p′ = Cp where C is a constant.

Some proximity measures are insensitive to additive translations, others to proportional

translations and some others to both. The following subsections describe in detail some

proximity measures and catalog them according to their sensitiveness to translations.

Euclidean Distance

The Euclidean distance is by far the most commonly used proximity measure. The

Euclidean distance is a dissimilarity measure, i.e., the greater the distance, the more different

the objects are. It is defined by

eik =

 n∑
j=1

(Xij −Xkj)
2

1/2

(2.5)

where Xij is the jth attribute of the ith object in the data matrix. The Euclidean distance

can also be represented in vectorial form

eik =‖ Xi −Xk ‖ (2.6)

the range of eik is 0 ≤ eik ≤ ∞.

11

Average Euclidean Distance

The average Euclidean distance is defined by

dik =


n∑

j=1

(Xij −Xkj)
2

n


1/2

(2.7)

It is defined in the range 0 ≤ dik ≤ ∞. From equations 2.5 and 2.7 it can be seen that

dik =
eik√

n
(2.8)

The main difference between the classical Euclidean distance and the average Euclidean

distance is not the resultant value after their computation, but the possibility of using the

average Euclidean distance when there are missing values in the data matrix.

Shape Difference Coefficient

This dissimilarity coefficient is defined in the range 0 ≤ zik ≤ ∞, and it is a function

of the average Euclidean distance dik. It can be obtained using

dik =
(

n

n− 1
(d2

ik − q2
ik)
)1/2

(2.9)

where

qik =
1

n2

 n∑
j=1

(Xij −Xkj)

2

The shape difference coefficient is insensitive to additive translations.

Cosine Coefficient

This is a similarity coefficient defined in the range −1 ≤ cik ≤ 1. The value 1 indicates

maximum similarity, but not necessarily identity. It is defined by

cik =

n∑
j=1

XijXkj

 n∑
j=1

X2
ij

1/2 n∑
j=1

X2
kj

1/2
(2.10)

or in vectorial form

cik =
Xi ·Xk

‖ Xi ‖ ‖ Xk ‖
(2.11)

The cosine coefficient is insensitive to proportional translations.

12

Correlation Coefficient

The correlation coefficient rik is defined by

rik =

n∑
j=1

XijXkj − (
1

n
)(

n∑
j=1

Xij)(
n∑

j=1

Xkj)
 n∑

j=1

X2
ij −

1

n
(

n∑
j=1

Xij)
2

 n∑
j=1

X2
kj −

1

n
(

n∑
j=1

Xkj)
2


1/2

(2.12)

It is defined in the range −1 ≤ rik ≤ 1. The value rik = 1 indicates maximum similarity

but not necessarily identity, and rik = −1 indicates minimum similarity. It is insensitive to

both, additive and proportional translations.

Canberra Metric Coefficient

This dissimilarity coefficient is defined in the range 0 ≤ aik ≤ 1, where a value of

0 indicates maximum similarity, which occurs when the ith object is identical to the kth

object. It is obtained using

aik =
1

n

n∑
j=1

|Xij −Xkj|
Xij + Xkj

(2.13)

Each term is scaled between 0 and 1, equalizing the contribution of each attribute to overall

similarity.

Bray-Curtis Coefficient

This dissimilarity coefficient is defined in the range 0 ≤ bik ≤ 1, where a value of

0 indicates maximum similarity, which occurs when objects i and k are identical. It is

obtained using

bik =

n∑
j=1

|Xij −Xkj|

n∑
j=1

(Xij + Xkj)

(2.14)

For both these coefficients, aik and bik, the values in the data matrix must be greater

than or equal to zero. Therefore, these coefficients cannot be used when the data matrix is

standardized.

Table 2.1 summaries the sensitiveness of the previously described proximity coefficients

to additive and proportional translations.

2.4.3 Proximity Measures for Qualitative Data

Similarity measures are common when dealing with data objects with categorical or

qualitative attributes. Two individuals i and j have a similarity coefficient sij of unity

13

Table 2.1: Sensitiveness of proximity measures to additive and proportional translations

Coefficient Range

Ignores

Additive
transla-
tions

Proportional
transla-
tions

Dissimilarity

eik 0 ≤ eik ≤ ∞ No No

dik 0 ≤ dik ≤ ∞ No No

aik 0 ≤ aik ≤ 1 No No

bik 0 ≤ bik ≤ 1 No No

zik 0 ≤ zik ≤ ∞ Yes No

Similarity

cik −1 ≤ cik ≤ 1 No Yes

rik −1 ≤ rik ≤ 1 Yes Yes

if both have identical values for all variables. A similarity of zero indicates that the two

objects differ maximally for all variables. Similarity is often limited to the range [0− 1] with

1 indicating maximum similarity.

Similarity Measures for Binary Data

As mentioned before binary attributes are a special case of categorical data. There are

many similarity measures for binary data, but all of them are defined in terms of the entries

of a cross-classification of the counts of matches and mismatches in the p variables of two

data objects. Table 2.2 shows the general version of this cross-classification.

Table 2.2: Counts of binary outcomes for two individuals

Individual i

Individual j

Outcome 1 0 Total

1 a b a + b

0 c d c + d

Total a + c b + d p = a + b + c + d

14

Table 2.3: Similarity measures for binary data

Measure Formula

Matching coefficient sij = a+d
a+b+c+d

Jaccard coefficient sij = a
a+b+c

Rogers and Tanimoto sij = a+d
a+2(b+c)+d

Sokal and Sneath sij = a
a+2(b+c)

Gower and Legendre sij = a+d
a+ 1

2
(b+c)+d

Gower and Legendre sij = a
a+ 1

2
(b+c)

A list of some of the similarity measures often used for binary data is shown in Table 2.3.

The sharp-eyed reader should notice that these coefficients differ in how they handle zero-

zero matches and on different weightings for mismatches. The reason for these differences

lies on the uncertainty associated with term d. For example, consider the case of an attribute

encoding gender. There is no preference as to which of the two categories should be coded

zero or one. In this case both occurrences should be considered. This is not always the case,

however. Imagine we are comparing two attributes encoding some feature of an animal. The

sole absence of a characteristic does not always indicates that two animals are as similar as

if they both would have it.

Similarity Measures for Multilevel Qualitative Data

When qualitative data have more than two levels, representing them as a collection

of binary-valued attributes will produce a large number of “negative” matches. As was

mentioned above, this causes trouble when these matches are not meaningful.

An alternative method of measuring proximity between this kind of data is to allocate

a score sijk of zero or one to each variable k, depending on whether two individuals i and j

are the same on that variable. The proximity coefficient is then obtained using

sij =
1

p

p∑
k=1

sijk (2.15)

2.4.4 Proximity Measures for Ordinal-Scaled Data

Kendall’s tau Coefficient

This measure is a measure of correlations between two ordinal-level variables. For a

sample of n observations, there are n(n− 1)/2 possible comparison points [23]. So Kendall’s

15

tau, τik is defined as

τik =
C −D(

n
2

) (2.16)

where C is the number of pairs that are concordant and D is the number of pairs that are

discordant. Kendall’s tau is defined in the range −1 ≤ τik ≤ 1.

2.4.5 Proximity Measures for Mixtures of Qualitative and Quan-

titative Data

There are several strategies to deal with mixtures of qualitative and quantitative data.

Among others, one can dichotomize all variables and use a similarity measure for binary data;

another possibility would be to construct a dissimilarity measure for each type of variable

and combine these, etc. Gower, in 1971, proposed a general similarity measure given by

sij =

p∑
k=1

wijk sijk

p∑
k=1

wijk

(2.17)

where sij is the similarity between the ith and jth element as measured by the kth variable,

and wijk is typically one or zero depending on whether the comparison is considered valid.

2.5 Clustering Techniques

2.5.1 Hierarchical Methods

Hierarchical clustering methods do not partition a data set into clusters in a single

step, rather, they iteratively divide or join existing clusters to form a hierarchy of partial

clusterings. Because it is possible to divide or join groups, hierarchical methods can be

classified into agglomerative or divisive methods if they join or divide partial clusterings

respectively.

Due to the fact that hierarchical methods create partial clusterings all the way from

clusters containing only one element to a single big cluster containing all elements, one has

to decide when to stop the algorithm either by guessing the optimal number of clusters or

by establishing a distance threshold. In general, determining the optimal number of clusters

is a difficult problem on its own.

Agglomerative methods

Agglomerative methods start with n single-member clusters and fuse them iteratively

until a single cluster with n elements is created. The basic criterion used to fuse clusters

16

is their proximity in attribute space; therefore, depending on how we measure proximity

between two elements, one element and a cluster, and between two clusters, is the final

clustering hierarchy. In the following subsections, we present the most commonly used

agglomerative techniques used. Figure 2.1 shows an example of a hierarchical agglomerative

clustering process.

Single linkage clustering method

The defining feature of the single linkage method is that the distance between groups is

defined as that of the closest pair of individuals whose members are in different groups. With

the single linkage method, we need to recompute the proximity matrix after each clustering

step.

Figure 2.2 shows the merge criterion used by the single linkage method. The distance

measure used in this example is the Euclidean distance.

Complete linkage clustering method

The complete linkage clustering method is very much like the single linkage method but

instead of using as merging criterion the closest pair of individuals from different groups,

this method takes the furthest. Figure 2.3 shows the merge criterion used by the complete

linkage method. The distance measure used in this example is the Euclidean distance.

Average linkage clustering method

The average linkage clustering method is in between the single linkage method and

complete linkage methods. In this method, the distance between two clusters is the average

of the distance between all pairs of individuals that are made up of one individual from

each group. Figure 2.4 shows the merge criterion used by the average linkage method. The

distance measure used in this example is the Euclidean distance.

17

(a) Initial clustering

(b) First iteration (c) Second iteration

(d) Third iteration (e) Last iteration

Figure 2.1: Example of an agglomerative clustering on a data collection.

18

Figure 2.2: Inter-cluster distance measure for the single linkage method.

Figure 2.3: Inter-cluster distance measure for the complete linkage method.

19

Figure 2.4: Inter-cluster distance measure for the average linkage method.

Ward’s minimum variance clustering method

In this method, the criterion to decide which clusters to merge is that of minimum

intra-cluster variance increase. The method tries to minimize

E =
g∑

m=1

p∑
j=1

‖ ej − µm ‖2 (2.18)

where µm is the centroid of cluster m = 1, 2, . . . , g, ej is the element j = 1, 2, . . . , p of the

cluster m and g is the total number of clusters at the moment of joining.

The Ward’s method does not guarantee an optimal partitioning of objects into clusters.

This is because of the greedy strategy used by the method and because the algorithm does

not explore all possible partitions.

Weighted pair-group method using arithmetic averages

This method requires taking a weighted average of the resemblance coefficients when

recomputing the proximity matrix. Take for example the case when the proximity coefficient,

say Rij, is used to measure the proximity between point i and point j. In that case, and

using the average linkage method, the proximity value for clusters (124) and (35) would be

R(124)(35) =
(

1

6

)
R13 +

(
1

6

)
R15 +

(
1

6

)
R23 +

(
1

6

)
R25 +

(
1

6

)
R43 +

(
1

6

)
R45

20

In computing the average, each term is given the same weight. Using the weighted

pair-group method, the proximity value would be

R(124)(35) = w13R13 + w15R15 + w23R23 + w25R25 + w43R43 + w45R45

that is, every proximity coefficient is weighted differently.

Centroid method

In this method the similarity between two clusters is equal to the similarity between

their centroids. This method has the problem of reversals, that is, the distance between

two clusters after a merge decreases, instead of increasing. This gives some problems at the

interpretation stage.

Flexible method

The Lance and Williams recurrence formula gives the distance between a group k and

a group ij formed by the fusion of two groups (i and j) as

dk(ij) = αidki + αjdkj + βdij + γ|dki − dkj| (2.19)

where dij is the distance between groups i and j.

By choosing certain values for the parameters of equation2.19, a completely different

clustering method can be applied. For example, if one choose αi = αj = 1/2 and β = 0 and

γ = −1/2, the distance between groups is

dk(ij) =
1

2
dki +

1

2
dkj −

1

2
|dki − dkj|

if dki > dkj then |dki − dkj| = dki − dkj and dk(ij) = dkj. Similarly, if dki < dkj then

|dki− dkj| = dkj − dki and dk(ij) = dki. Therefore, the recurrence formula gives the required

dk(ij) = min{dki, dkj} for the single linkage method.

2.5.2 Divisive Methods

There are basically two types of divisive methods: monothetic and polythetic methods.

Monothetic methods use a single variable on which to base the split at a given stage, whereas

polythetic methods consider all variables at each stage.

Monothetic divisive methods

If the data to be clustered consists of p binary variables, the division of elements can

be done using an optimization criterion reflecting either cluster homogeneity or association

21

with other variables. A possible homogeneity criterion is the information content C, defined

by p variables and n objects:

C = p nlogn−
p∑

k=1

[fklogfk − (n− fk)log(n− fk)] (2.20)

where fk is the number of individuals having the kth attribute. If a group X is to be split

into two groups A and B, the reduction in C is CX −CA −CB. Therefore, clusters are split

at each stage according to possession of the attribute which leads to the greatest reduction

in C.

Polythetic divisive methods

The MacNaughton-Smith et al. method starts by finding the object that is farthest

away from the others in a group, and using it as a seed for a splinter group. Each object is

considered for entry to the splinter group, the closest object is moved into it. This process

is repeated with the largest cluster in diameter.

2.5.3 Optimization Methods

Optimization clustering techniques produce a partition of data according to some opti-

mization criterion. Differences between optimization methods arise because of the different

optimization criteria and algorithms that might be used.

A basic notion on which the following discussion is based is that every partition of a

collection of n individuals into g groups has an associated index c(n, g) that measures the

quality of that partition.

Clustering criteria derived from the dissimilarity matrix

These criteria are based on two concepts: homogeneity and separation. Using these

criteria, we look for compact and well-separated clusters.

Table 2.4 lists some of the most widely used criteria in optimization clustering algo-

rithms.

In general, an optimization-based clustering algorithm aims at maximizing the homo-

geneity (or minimizing heterogeneity) and maximizing separation among groups. To accom-

plish this task and after having chosen an index measuring the heterogeneity or separation

of a group, clustering criteria must be defined by a suitable aggregation over groups. Such

aggregations could be

c1(n, g) =
g∑

m=1

h(m) (2.21)

or

c2(n, g) = max
m=1,...,g

[h(m)] (2.22)

22

Table 2.4: Quality measures of the mth group containing nm data. These measures are based on
a dissimilarity matrix ∆ with elements δql,kv measuring the dissimilarity between the lth object in
the qth group and the vth element of the kth group

Measure Index (r ∈ {1, 2})

Heterogeneity h1(m) =
nm∑
l=1

nm∑
v=1,v 6=l

(δml,mv)
r

Heterogeneity h2(m) = max
l=1,...,nm
v=1,...,nm

v 6=l

[(δml,mv)
r]

Heterogeneity h3(m) = min
v=1,...,nm

[
nm∑
l=1

(δml,mv)
r

]

Separation i1(m) =
nm∑
l=1

∑
k 6=m

nk∑
v=1

(δml,kv)
r

Separation i2(m) = min
l=1,...,nm

k 6=m
v=1,...,nk

[(δml,kv)
r]

or

c2(n, g) = min
m=1,...,g

[h(m)] (2.23)

Cluster criteria can also be defined in terms of homogeneity and separation.

Clustering criteria derived from continuous data

A commonly used clustering criterion derived from continuous data is the minimization

of the sum of squared Euclidean distances between individuals and their group mean, that

is,
g∑

m=1

nm∑
l=1

d(ml, m)2 (2.24)

where d(ml, m) is the Euclidean distance between the lth individual in the mth group and

the mean of the mth group.

This criterion has some serious problems: the implicit spherical shape that assumes on

the part of the clusters and its scale dependency.

There are other clustering criteria that overcome the shape problem, one of them is:

g∏
m=1

[det(Wm)]nm (2.25)

23

where Wm is the dispersion matrix within the mth group

Wm =
nm∑
l=1

(xml − x̄)(xml − x̄)′ (2.26)

and nm is the number of individuals in the mth group.

The selection of a given optimization criteria depends on some background knowledge

of the data to be clustered.

Optimization algorithms

The most basic straightforward optimization algorithm for cluster analysis is the one

that calculates the value of the criterion for all possible partitions and choose the one that

gives the optimal value for that criterion. In practice, however, this is not practical since

the number of different partitions of n objects into g groups is given by

N(n, g) =
1

g!

g∑
m=1

(−1)g−m

(
g

m

)
mn (2.27)

For this reason, the hill-climbing algorithms family has been used to solve this problem.

Essentially, these algorithms take the following steps when trying to optimize the clustering

criterion:

1. Find some initial partition of the n objects into g groups.

2. Calculate the change in the clustering criterion value of changing each object from its

group into another group.

3. Make the change that maximizes the improvement in the value of the criterion value.

4. Repeat from step 2 until no further improvement is achieved.

All optimization algorithms that are applied in practice vary in the way the find the

initial partition. Of course, the final clustering depends very much on this initial partition.

Therefore, optimization-based clustering algorithms are run several times with varying initial

partitions in order to avoid local optima.

A good example of such algorithm is the well-known k-means, which iteratively updates

a partition by simultaneously relocating each object to the group to whose mean it is closest

and then recalculating the group means.

24

Chapter 3

Ant-Based Clustering Algorithms

In this chapter, ant-based clustering algorithms are described. The chapter begins with

a review of the inspiring behaviors exhibited by ants and termites. It continues with the

description of the first works on ant-based sorting and clustering. The chapter ends with the

presentation of some recent improvements of ant-based clustering algorithms.

3.1 Cemetery Organization, Brood Sorting and Nest

Building

An interesting collective behavior of several ant species is the creation of “cemeteries” or

piles of corpses. When dead bodies of nestmates and defeated enemies are scattered around

the nest entrance of some ant species such as Pogonomyrmex badius and Lasius niger, worker

ants create piles of their corpses on a distant spot away from it [25, 4].

Although this behavior is not fully understood, computer scientists, with help from

entomologists have designed simple models in which insects are simulated by computational

agents that move randomly in their environment and pick up and drop objects that have

proved successful for spatial sorting and data clustering. The basic idea in these models is

that large clusters are attractive to ants to make them larger, while small clusters are attrac-

tive to make them smaller. The underlying mechanism by which this is possible is stigmergy,

the indirect influence on the behavior of others through local environment modifications.

While studying termites of Macrotermes bellicosus, Pierre-Paul Grassé [11] observed

that when workers of this species were placed in a container with some soil pellets, the insects

carried about and put down pellets in an apparently random fashion after an exploration

phase where they moved through the container without taking any action. At this stage, a

pellet just put down by a termite worker is often picked up and placed somewhere else by

another worker. When a pellet is placed on top of another, the resultant structure appears

to be much more attractive and termites soon start piling more pellets nearby, making

the dropping spot even more attractive [25]. To explain this behavior, he proposed that

stigmergy, from the Greek phrase “incite to work”, was a key factor in that process. In this

case, stigmergy operates in the following way: If a loaded termite finds a heap of pellets, it

25

drops its load on top of it making the heap larger. The heap triggered the dropping behavior

on the termite. The larger the heap, the higher the probability the termite drops a pellet on

top of it. It is clearly a positive feedback process. On the other hand, if an unloaded termite

finds an isolated pellet, it will pick it up almost deterministically; however, if the pellet is

surrounded by other pellets, the probability of picking it up lowers. Therefore, a small heap

or group of pellets is likely to disappear.

Another interesting behavior that goes beyond simple object piling is brood sorting.

In the ant Leptothorax unifasciatus, workers gather larvae according to their development

stage. In experiments, worker ants of this species put early larvae at the center of a plate and

older larvae in the periphery [4]. This suggests that in brood sorting, objects are not just

put together, as it happens with cemetery organization or nest building, but spatially sorted

according to some of their distinctive characteristics. This fact inspired the basic model for

spatial sorting using artificial ants. It is discussed in the next section.

3.2 Spatial Aggregation and Sorting

3.2.1 Spatial Aggregation

Deneubourg et al. [6] proposed a model for spatial aggregation based on the behaviors

described above. A group of agents exhibiting the same behavior move randomly over a

toroidal square grid. In the environment there are objects that were initially scattered in a

random fashion. The objects can be picked up, moved or dropped in any free location on the

grid. An object is picked up with high probability if it is not surrounded by other objects

and is dropped by a loaded agent if its neighborhood is populated by other objects and the

location of the agent has no object on it. The probability pp with which an object is picked

up is given by

pp =

(
k1

k1 + f

)2

(3.1)

where k1 is a constant and f is considered to be a measure of object density in the neigh-

borhood of the agent.

Figure 3.1 shows the behavior of the probability as a function of k1 and f .

If the object is surrounded by other objects, then f should be large in comparison with

k1 in order to make pp small. On the other hand, if the object is not surrounded by any

other object, then f should be small making pp high. The probability pd for an agent to

deposit an object is given by

pd =

(
f

f + k2

)2

(3.2)

where k2 is another constant. If the object is surrounded by other objects, then f should

be large in comparison with k2 in order to make pd approach 1. On the other hand, if the

26

 0
 0.2

 0.4
 0.6

 0.8
 1

k

 0

 0.2

 0.4

 0.6

 0.8

 1

f

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 3.1: Probability of picking an object as a function of k1 and f in Deneubourg’s model.

object is not surrounded by any other object, then f should be small making pd small. As

expected, pd has an opposite behavior than pp. This can be seen in figure 3.2.

Having a robotic implementation in mind, Deneubourg et al. [6] proposed to compute f

through a short-term memory each agent maintains. Keeping track of the last T time units,

an agent counts the number of objects it finds; f is the number of objects encountered by

the agent in the last T time steps divided by the maximum number of objects an agent can

find in T time units.

3.2.2 Spatial Sorting

Let us now consider the case where there are N different types of objects. The behavior

necessary to spatially sort all objects in the environment is very much the same as the

described above but with N different f ’s instead of just one. This small change has profound

effects on the collective behavior of agents because they are now trying to put together all

objects of the same type not just aggregating objects. This model assumes that agents know

how to perfectly differentiate one object from another; a knowledge that is normally not

available for most practical purposes.

27

 0
 0.2

 0.4
 0.6

 0.8
 1

k 0

 0.2

 0.4

 0.6

 0.8

 1

f

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 3.2: Probability of dropping an object as a function of k2 and f in Deneubourg’s model.

3.3 Exploratory Data Analysis

Lumer and Faieta [22] generalized the spatial sorting algorithm to apply it to ex-

ploratory data analysis. Taking as base model the one proposed by Deneubourg et al. [6],

they extended it by using agents that could compute a similarity or dissimilarity measure

between objects in the environment. The probabilities are computed as follows. The proba-

bility of picking a data element i is defined as

pp(i) =

(
kp

kp + f(i)

)2

(3.3)

where kp is a constant and f(i) is a similarity density measure with respect to element i.

Likewise, the probability of dropping a data element is given by

pd(i) =

{
2f(i) if f(i) < kd

1 otherwise
(3.4)

where kd is a constant. The similarity density f(i) for an element i, at a particular grid

location τ , is defined as

f(i) =


1

s2

∑
j∈Neigh(τ)

(
1− d(i, j)

α

)
if f > 0

0 otherwise

(3.5)

28

where s2 is the area of an agent’s perception zone, an arrangement of s × s sites, centered

at the location of the agent and α is a scaling factor of the dissimilarity measure d(i, j)

between elements i and j. If it is assumed that the elements can be represented as points in

an n-dimensional space, then the Euclidean distance could be used as dissimilarity measure.

Algorithm 1 presents a high level description of the basic algorithm of Lumer and Faieta.

Algorithm 1: Lumer and Faieta’s basic clustering algorithm

/* O is the set of data objects to be clustered */
/* A is the set of agents */

/* Initialization */
for all oi ∈ O do

Place oi randomly on any free location on the grid
end for
for all agents ∈ A do

Place agent randomly on any free location on the grid
end for

for t = 1 to tmax do
for all agents ∈ A do

if agent is unloaded and object oi is on agent’s location then
Compute pp(oi) /* Using expression 3.3 */
Draw random number r between 0 and 1
if r ≤ pp(oi) then

Pick up object oi

end if
else

if agent is loaded with oi and location is free then
Compute pd(oi) /* Using expression 3.4 */
Draw random number r between 0 and 1
if r ≤ pd(oi) then

Drop object oi

end if
end if

end if
Move randomly to any neighboring free location

end for
end for

In experiments, Lumer and Faieta showed that the algorithm was capable of correctly

classify elements of a synthetic data set; however, the number of clusters found were, in

general, more than those expected. To fix this problem, they proposed three modifications

to the basic algorithm.

29

The first modification was the introduction of variability into the agent population. The

element of change was the velocity of displacement. Velocities then range from 1 to Vmax

and represent the number of grid positions the agent can move in a single time unit along

a given direction vector. This variability was coupled to the sensitiveness of each agent to

dissimilarity in the following way

f(i) =


1

s2

∑
j∈Neigh(τ)

1− d(i, j)

α
(
1 + v−1

Vmax

)
 if f > 0

0 otherwise

(3.6)

The result is that an agent moving slowly will be more selective in their similarity

criterion than an agent moving rapidly. The effect of this variability is that the number

of final clusters is closer to the expected than the model with homogeneous agents. Fast

moving agents appear to create clusters in a coarser scale than slowly moving agents which

place data elements more carefully.

The second modification was the introduction of a short-term memory into agents so

that they could keep track of the dropping location of their last m carried elements. This

modification has the effect of lowering the probability that a just picked up element can create

an independent cluster by itself, thus reducing the final number of clusters. This happens

because every time an agent picks an element, it looks in its memory for the location of the

closest element in attribute space. The agent, instead of moving randomly, moves directly

toward that particular location.

The third modification was that of behavioral switches. If an agent has not manipulated

an item for a predetermined number of time units, it starts destroying the so far created

clusters. This does not end up in a total cluster destruction because other agents that have

not reached that state will reposition the disseminated objects.

3.4 Engineered Ant-Based Clustering Algorithms

As stated before, ant-based clustering algorithms are inspired by the collective behavior

of social insects’ colonies. However, this does not mean that we should “stick” with the

natural inspiration. In engineering, we are interested in ant-based clustering algorithms

because they offer advantages over other more traditional approaches, not because they help

us model ants’ behavior. Therefore, we look for improvements on their speed, efficiency, and

the quality of their final solutions.

Handl et al. [13, 15, 14] proposed a series of modifications to the Lumer and Faieta’s

clustering algorithm to improve its clustering, sorting, and robustness performance. They

started by tackling the problem of automatic clusters extraction from the grid. Because

there is no information about the correct number of clusters, they applied a single-linkage

hierarchical clustering algorithm over the grid. However, this algorithms presents the prob-

lem of “bridging”, i.e., it tends to merge two clusters into one just because of some isolated

30

data elements between them. To overcome this problem, they added a weighting term to

encourage the merging of the element around the borders of clusters. In addition, they also

modified the similarity density function f(i) in such a way as to penalize high dissimilarities.

Another modifications introduced by Handl et al. for improving the spatial separa-

tion of clusters on the grid were: the use of the Lumer and Faieta’s short-term memory

model to explore the neighborhoods of all remembered dropping locations in order to bias

the agents’ random walks to the most probable dropping location; an increasing radius of

perception to favor a rapid dissolution of early clusters and the improvement of final clusters;

a time-dependent modulation of the neighborhood function to improve spatial separation of

clusters on the grid; and a modified threshold functions to take advantage of all the previous

modifications.

With respect to robustness, Handl et al., proposed the activity-based adaptation of the

parameter α. Because the parameter α affects the agents’ sensitiveness to dissimilarities

among data objects, the number of cycles an agent has not manipulated an object is a

signal of an erroneous α value. Therefore, the α parameter is proposed to adapt all the time

depending on the activity of a given agent. For more information about the modifications

introduced by Handl et al. and their results, see [14].

Algorithm 2 presents a high level description of the basic algorithm proposed Handl et

al.

3.4.1 Ant-Based Clustering Quality Assessment

In an effort to formally evaluate the clustering quality of ant-based clustering algo-

rithms, Handl et al. [12] applied four validity measures to the resulting clustering from a

modified version of the Lumer and Faieta [22] algorithm.

The four validity measures used by Handl et al. in [12] were:

The F -Measure. The harmonic mean of recall and precision, also known as the F -Measure.

Commonly associated to the information retrieval field, recall and precision are mea-

sures that give us some idea of how well a clustering algorithm is identifying the classes

present in a database. In the context of classification, recall is defined as r(i, j) = nij

ni

where nij is the number of elements of class i in cluster j and ni is the number of

elements of class i. Precision is defined as p(i, j) = nij

nj
where nj is the number of

elements in cluster j. For a class i and a cluster j the F -Measure is defined by

F (i, j) =
2 p(i, j) r(i, j)

p(i, j) + r(i, j)

The overall F -Measure for the classification generated by the clustering algorithm is

given by

F =
∑

i

ni

n
max

j
{F (i, j)} (3.7)

31

Algorithm 2: Handl et al.’s basic clustering algorithm

/* O is the set of data objects to be clustered */
/* A is the set of agents */

/* Initialization */
for all oi ∈ O do

Place oi randomly on any free location on the grid
end for
for all aj ∈ A do

Select randomly a data object oi

Load agent aj with object oi and place it randomly on any free location on the grid
end for

for t = 1 to tmax do
Select randomly an agent aj

Displace agent aj stepsize units along its direction vector
if aj’s location is free then

Compute pd(oi)
Draw random number r between 0 and 1
if r ≤ pd(oi) then

Drop object oi

while agent aj is unloaded do
Select randomly a data object oi

Compute pp(oi) /* In object’s neighborhood */
Draw random number r between 0 and 1
if r ≤ pp(oi) then

Pick up object oi

end if
end while

end if
end if

end for

32

where n is the size of the data set. F is limited to the interval [0, 1] with a value of 1

with a perfect clustering.

The Rand Statistic. Determines a similarity measure between the known perfect classi-

fication C and the partition generated by the clustering algorithm P . It is defined

as

R =
a + d

a + b + c + d
(3.8)

where

• a is the number of pairs where both elements belong to the same class in C and

to the same group of the partition P .

• b is the number of pairs where both elements belong to the same class in C and

to different groups in P .

• c is the number of pairs where both elements belong to different classes in C and

to the same group in P .

• d is the number of pairs where both elements belong to different classes in C and

to different groups in P .

Note that a + b + c + d = N(N − 1)/2 where N is the total size of the data set. The

Rand statistic is limited to the interval [0, 1] with a value of 1 with a perfect clustering.

The intra-cluster variance. This measure tries to capture the idea that members that

belong to the same cluster should be as close to each other as possible. It is given by

I =
n∑

i=1

∑
p∈Ci

‖p− µi‖2 (3.9)

where n is the total number of groups in the partition generated by the clustering

algorithm, and µi is the centroid of group i. This measure is to be minimized.

The Dunn index. This measure will give a high value whenever the partition gives com-

pact and well separated clusters. It is given by

D = min
c,d∈C

{
‖µc − µd‖

maxe∈C{diam(e)}

}
(3.10)

where µi is the centroid of cluster ianddiam(i) is the diameter of cluster i which could

be considered a dispersion measure. It is defined as

diam(c) = max
x,y∈c

{‖x− y‖}

For comparison purposes, we chose to use the same clustering quality measures

33

34

Chapter 4

Direct communication among agents in ant-based

clustering algorithms

This chapter presents the effects on the quality of the clustering obtained by using direct

communication among agents in ant-based clustering algorithms. The information exchange

occurs whenever a group of agents coincide on the grid. An agent receives information from

its peers about the environment state to update its own environment state representation.

The local environment state is later used by an agent to bias its random walk in search for

dropping locations.

The isolated effects of the environment state on agents’ actions are also explored by

eliminating the update of each agent’s local environment state representation, but allowing

the bias in their random walks.

4.1 Direct communication strategies

In all previous attempts to perform clustering tasks using a simulated insect colony

there is no direct interaction among agents. This is perhaps due to the fact that early works

on ant-based clustering and sorting focused on robotic implementations [6, 16, 1, 20] where

direct real-time communication is much more complicated than in software simulations.

If we let agents exchange information about the spatial distribution of data objects on

the environment, it should be possible for them to enrich or update their own environment

state representations. The ultimate goal for information exchange is to let agents choose the

best location on the environment on which to drop a data object, and therefore create better

clusters. This is what has been done in the series of experiments presented in this chapter.

From what was said in the previous paragraphs it is clear that we need agents represent

their environment. To explore the effects of using different environment representations, I

first used a natural extension of the short-term memory model proposed by Lumer and Fai-

eta [22]. Whenever two or more agents coincide on the grid, they exchange their short-term

memories and each augment its own short-term memory. When two agents have recently

manipulated the same data object, the agent with the oldest information updates its memory

while the other leaves it unchanged.

35

The second strategy explored in this thesis is the creation of environment maps. In an

environment map, an agent represents the spatial distribution of data elements. A succinct

representation of a spatial distribution is accomplished through the use of self-organizing

maps or SOM’s [19]. However, because of the limitations of conventional SOM’s; namely,

the a priori fixed number of neurons and the problem of “dead” neurons or neurons that

do not update their weight vectors due to a misplacement in the input space, each agent

must create a dynamic self-organizing map. The particular implementation of the dynamic

self-organized map should not change the final effects as long as it accurately represents the

spatial distribution of data elements. In order to accurately represent the environment, an

agent should update its map as it explores the environment, regardless whether it is in search

for a dropping location or just wandering through the environment. With the environment

map representation, each time two agents exchange information they complement their maps

as is described in subsection 4.2.2.

As with the model of Lumer and Faieta [22], whenever an agent picks up a data object,

it looks for a favorable dropping location. However, instead of looking into its memory for

the closest previously manipulated object, it classifies it using its own self-organizing map

to bias its random walk to the location of the winner neuron. The winner neuron should be

located near the most similar object to the one just picked up because the network reflects

the spatial distribution of objects in the environment.

In the second series of experiments in which no representation update is done, loaded

short-term memory agents explore their peers’ memories to look for the closest object to

their load in attribute space. If an agent finds a closer object in one of its peers’ memories,

the agent redirects itself toward the location of that object.

In the environment map representation, whenever a loaded agent coincides on the grid

with one or more agents, it classifies its load using its peers’ neural networks to determine

the closest winner neuron. If it is closer in the attribute space than its own winner neuron,

then the agent redirects itself toward the location of that neuron on the grid.

4.2 Experimental Setup

Two well-known test databases were used for the experiments. Each one of them

with different difficulty levels. In order to deal with them, the way an agent evaluates its

neighborhood to compute a similarity density was modified. In the following, a more detailed

explanation of the experimental setup is presented.

4.2.1 Test Data

In order to evaluate the impact of the introduction of information exchange between

agents I used two real data collections from the UCI Machine Learning Repository [5]. These

were:

36

• Iris Plant Database. This database is composed of 150 instances with 4 numeric at-

tributes each. There are 3 classes composed of 50 instances each. Of these, one is

linearly separable from the other two; the latter are not linearly separable from each

other.

• Wine Recognition Database. This database is composed of 178 instances with 17

numeric attributes each. There are 3 classes in the database where class 1 has 59

instances, class 2 has 71 instances, and class 3 has 48 instances.

To eliminate the bias on similarity measures provoked by different scales within data at-

tributes, all data sets were standardized. The similarity measure used in all the experiments

was the cosine metric1.

4.2.2 Agent Models

The agents picking and dropping probabilities were computed using expressions 3.3

and 3.4 respectively. However, because the cosine metric is a similarity measure, expres-

sion 3.5 is not directly applicable. Therefore, for the local similarity density f(i), the follow-

ing expression was used

f(i) =
1

s2

∑
j∈Neigh(τ)

(
1

1 + e−S
d(i,j)

α
+D

)
(4.1)

where S is the steepness of the response curve and D serves as a displacement factor. In

our experiments, S was fixed to 5 because it provides a similarity value close to 0 when the

cosine measure is minimum, that is, when the cosine measure gives a value of −1, and D to

1 because this allows us to better distinguish vectors with separation angles between 0 and

π/2. The resultant similarity response surface is shown in figure 4.1.

This local similarity density function permits the integration of simple background

knowledge. In particular, if it is known that data classes are difficult to separate, one can

move the displacement factor near the maximum value of the similarity measure to better

discriminate among very similar data elements. This expression also has the advantage of

limiting the range of values α can take to (0, 1], given that −1 ≤ d(i, j) ≤ 1, as is the case

for the cosine metric.

Table 4.1 summarizes all other agent settings used in the experiments2.

All previously described settings were used for the Lumer and Faieta [22] basic algo-

rithm and for the simple memory exchange algorithm. For the environment map building

algorithm, the technique of choice was a growing neural gas network to represent data spatial

distribution. Introduced by Fritzke [10] as an approach to overcome some of the limitations

of conventional self-organizing maps, a growing neural gas network consists of:

1In preliminary experiments, it proved to give better results than Euclidean distance.
2The settings in tables 4.1 and 4.2 were derived experimentally, and proved to give good results for the

given test databases.

37

-1

-0.5

 0

 0.5

 1

Cosine measure

 0
 0.2

 0.4
 0.6

 0.8
 1

Alpha

 0

 0.2

 0.4

 0.6

 0.8

 1

Similarity degree

Figure 4.1: Response surface. Similarity response defined as a function of the cosine metric between
two data elements and the scaling factor α. Taken from the similarity component of equation 4.1
where S = 5 and D = 1.

• a set A of units (or nodes). Each unit c ∈ A has an associated reference vector wc ∈ Rn.

The reference vectors can be regarded as positions in input space of the corresponding

units.

• a set N of connections (or edges) among pairs of units. These connections are not

weighted. Their sole purpose is the definition of topological structure.

The idea behind the training algorithm is to successively add new units to an initially

small network by evaluating local statistical measures gathered during previous adaptation

steps. The network topology is generated incrementally using a competitive Hebbian learning

rule. The dimensionality depends on the input data and can vary locally.

The training algorithm basically begins with two randomly located units and an input

signal that is to be learned. The learning rule used to adapt the reference vectors of the unit

that is closest in the input space to the current input signal and its topological neighbors is

w(t+1) = w(t) + ε(ξ −w(t)) (4.2)

where w is the reference vector of the adapting unit, ε is a constant called learning rate, ξ

is the input signal being learned. The ε constant has different values for the adapting unit

and its topological neighbors and are labeled εb and εn respectively.

The squared error of the nearest unit in turn is accumulated, so that after λ input

signals have been learned, a new unit is created half between the two neighboring units

38

Table 4.1: Agent settings for direct communication experiments

Parameter Value

kp 0.1

kd 0.15

α 0.7

Neighborhood size 5× 5

Short-term memory size 8

with the highest accumulated errors. The deletion of units happens whenever a unit is not

topologically connected with any other unit. This occurs after that a given number of input

signals have not fired a unit. This process continues until a stop criterion is met. The

complete training algorithm can be found in [10].

The embedded growing neural gas networks have a parameter set on their own, the

reader is referred to [10] for a detailed explanation of the meaning and effects of all these

parameters. Table 4.2 summarizes the parameter set for the embedded growing neural gas

networks used in our experiments.

Table 4.2: Embedded growing neural gas networks settings

Parameter Value

Winner neuron learning rate εb 0.8

Neighboring neurons learning rate εn 0.005

Maximum edge age 50

Growing threshold λ 100

Local error decreasing rate α 0.5

Global error decreasing rate d 0.995

A learning rate of 0.8 is normally considered too high, however, due to the fact that

the ant environment is highly dynamic, a high learning rate is needed in order to allow the

network learn the real data distribution on the grid. A crucial condition for the proper

operation of this model.

In the experiments, the growing neural gas networks were represented by two sets of

nodes. One set of nodes in the attribute space of the database, and the other in the plane,

i.e., in the grid. Because the algorithm uses a competitive Hebbian learning rule, adaptation

occurs whenever an input vector falls within the Voronoi region of a node. The Voronoi

39

region for a node pi is defined as

V (pi) = {x : |pi − x| ≤ |pj − x|,∀j 6= i} (4.3)

A Voronoi diagram is a combination of Voronoi regions as can be seen in figure 4.2.

Figure 4.2: Voronoi diagram of a set of 6 nodes in the plane.

To combine two growing neural networks, we relied on their Voronoi diagrams. To

exemplify the process, suppose we want to combine the diagram shown in figure 4.2 with

the one shown in figure 4.3.

Figure 4.3: Voronoi diagram of a set of 3 nodes in the plane.

Since the goal of combining two environmental maps represented by growing neural gas

networks is to better approximate the actual distribution of data on the grid, it is obvious

40

that large maps will have priority over small ones. In our example, it means that we will

alter the network with six nodes with the information provided by the map with three nodes.

The first step in the combination process is to find on which Voronoi region fall the

nodes of the modifying network. Figure 4.4 shows graphically this process.

Figure 4.4: Superimposition of two Voronoi diagrams.

The second step consists in updating the nodes that are closest to the nodes just

introduced, that is, the nodes that generate the Voronoi region on which the modifying

nodes fell. The new position of a node, in both the attribute space and in the grid, is the

centroid of the nodes involved. This is shown in figure 4.5.

Figure 4.5: Network update as a result of two superimposed Voronoi diagrams. The stars indicate
the new position of the modified node.

41

As a result of the network update, the two agents involved in the exchange end up with

the same network. Figure 4.6 shows the final configuration of the Voronoi diagram after the

modification.

Figure 4.6: Voronoi diagram of the resultant network.

4.2.3 Experiments Design

To observe the effects of information exchange among agents during the clustering

process, the four measures used by Handl et al. in reference [12] were applied every 10,000

simulation cycles to the partial clustering hitherto obtained. Each simulation cycle was

composed of N individual actions, where N was the number of agents in the simulation. All

algorithms were tested 30 times with every database for 1,000,000 simulation cycles.

In the experiments, information exchange occurs only whenever two or more agents

coincide on the grid. We can expect therefore, that the probability of an encounter raises as

the number of agents is increased, or more precisely, as the agent density of the environment

increases. By having more agent encounters over time, the effects of information exchange

should have more impact. Therefore, we tried with populations of 10 and 30 agents within

an environment of 100× 100 locations in all the experiments.

Since the final goal of information exchange is to approximate the environment state,

we also include the results obtained with a version of the algorithm in which agents are

omniscient, i.e., agents that know exactly the spatial distribution of data objects on the grid

all the time. In this version, when agents pick up a data object, they direct themselves toward

the closest data object available on the grid. Hence, there is no need for any environment

representation in these agents.

In order to collect information from the spatial partition formed by the agents on

the grid, an agglomerative hierarchical algorithm was applied on the data using Euclidean

42

distance and the single linkage strategy. The maximum distance to merge clusters was set

equal to the size of the agents neighborhood. The distance used to compute the variance

and the clusters diameters in the attribute space was also the Euclidean distance.

4.3 Results of Experiments on Information Exchange

for Environment Representation Updates

In this section and in the following, five different algorithms were tested:

• the basic Lumer and Faieta’s short-term memory agents algorithm without communi-

cation among agents;

• the Lumer and Faieta’s algorithm with map creating agents without communication

among them;

• an omniscient agents algorithm;

• an algorithm in which agents update their short-term memories;

• and an algorithm in which agents update their distribution maps.

In the last two algorithms, the update is done whenever agents exchange information.

The results are grouped by validity measure. Firstly, the resemblance measures between

the obtained clustering and the known correct classification, i.e., the F-measure and Rand

statistic. Secondly, the quality measures based on general statistical properties a good

clustering should have, i.e., the intra-cluster variance and Dunn index. Subsection 4.3.5

presents the convergence of the algorithms to the correct number of clusters. Results with

20 agents are skipped because, in all cases, they showed a behavior in between the results

with 10 and 30 agents.

4.3.1 F -Measure

Figure 4.7 shows the F -Measure scores over time obtained by the tested algorithms on

the Iris Plant and Wine databases using 10 agents. On both databases, the algorithm with

noncommunicating map creating agents performs better than the other four algorithms.

Interesting enough, the algorithms with noncommunicating agents perform better than

the algorithm with omniscient agents during the first 680,000 cycles with the Wine database

and all the time with the Iris database. The algorithm with omniscient agents has a different

response function than the algorithm with noncommunicating agents. It is slower during

the first cycles, but it improves almost monotonically. The same is true for the algorithm

with memory updating agents. The only difference is a negative offset with respect to the

omniscient agents algorithm.

43

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory update agents

map update agents

(a) Iris database

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory update agents

map update agents

(b) Wine database

Figure 4.7: F -Measure scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents update their short-term memories,
and an algorithm in which agents update their distribution map. The results were obtained using
10 agents. A score value of 1 means perfect classification.

Figure 4.8 shows the same scores than figure 4.7 but with 30 agents. In the Iris database,

the algorithm with noncommunicating map creating agents performs better than the others

all the time. This is not the case in the Wine database in which the best performing algorithm

is the one with omniscient agents. The algorithm with map updating agents performs terribly

bad following the same trend of above. The characteristic response function of the algorithm

with memory updating agents is the same as before, including the negative offset respect to

44

the omniscient agents algorithm.

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory update agents

map update agents

(a) Iris database

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory update agents

map update agents

(b) Wine database

Figure 4.8: F -Measure scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents update their short-term memories,
and an algorithm in which agents update their distribution map. The results were obtained using
30 agents. A score value of 1 means perfect classification.

4.3.2 Rand Statistic

The Rand statistic scores over time for all five algorithms on the Iris Plant and Wine

databases using 10 agents are shown in figure 4.9.

45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory update agents

map update agents

(a) Iris database

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory update agents

map update agents

(b) Wine database

Figure 4.9: Rand statistic scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents update their short-term memories,
and an algorithm in which agents update their distribution map. The results were obtained using
10 agents. A score value of 1 means perfect classification.

In both cases the worst performing algorithm is the one with map updating agents.

The algorithm with noncommunicating short-term memory agents and the memory updating

agents algorithm perform equally well. Notice that the memory updating agents algorithm

has the same negative offset respect to the omniscient agents algorithm seen before. With

the Iris database the map creating agents algorithm is the best.

In figure 4.10 almost the same situation than in figure 4.9 can be seen. In the Iris

46

database the best algorithm is the one with map creating agents. The best performing

algorithm in the Wine database is the one with omniscient agents, the worst is the map

updating algorithm, and the other two algorithms behave almost the same.

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory update agents

map update agents

(a) Iris database

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory update agents

map update agents

(b) Wine database

Figure 4.10: Rand statistic scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents update their short-term memories,
and an algorithm in which agents update their distribution map. The results were obtained using
30 agents. A score value of 1 means perfect classification.

47

4.3.3 Intra-cluster Variance

The plots seen in figure 4.11 correspond to the intra-cluster variance scores for all tested

algorithms with 10 agents on the two test databases.

 150

 200

 250

 300

 350

 400

 450

 500

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory update agents

map update agents
Iris database variance

(a) Iris database

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory update agents

map update agents
Wine database variance

(b) Wine database

Figure 4.11: Total intra-cluster variance over time for the Iris Plant and Wine databases of Lumer
and Faieta’s short-term memory agents algorithm, the same algorithm but with map creating
agents, an omniscient agents algorithm, an algorithm in which agents update their short-term
memories, and an algorithm in which agents update their distribution map. The results were
obtained using 10 agents. As a reference, the total intra-cluster variance of the correct clustering
is shown.

The algorithm with omniscient agents performs better than the others. The worst

48

performing algorithm is the one with map updating agents, and Lumer and Faieta’s short-

term memory agents algorithm and the memory updating agents algorithm perform almost

equally well. As a reference, the total intra-cluster variance of the correct clustering is shown.

Remember that this measure is to be minimized.

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory update agents

map update agents
Iris database variance

(a) Iris database

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory update agents

map update agents
Wine database variance

(b) Wine database

Figure 4.12: Total intra-cluster variance over time for the Iris Plant and Wine databases of Lumer
and Faieta’s short-term memory agents algorithm, the same algorithm but with map creating
agents, an omniscient agents algorithm, an algorithm in which agents update their short-term
memories, and an algorithm in which agents update their distribution map. The results were
obtained using 30 agents. As a reference, the total intra-cluster variance of the correct clustering
is shown.

Figure 4.12 shows how the total intra-cluster variance gap between the omniscient

49

agents algorithm and the memory-based algorithms gets smaller as the number of agents

increases. Wit the Iris database, the final performance is almost the same for all algorithms

except for the map updating agents algorithm. The map creating agents algorithm exhibits

the same behavior no matter how many agents there are.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory update agents

map update agents
Iris database Dunn index

(a) Iris database

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory update agents

map update agents
Wine database Dunn index

(b) Wine database

Figure 4.13: Dunn index score over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents update their short-term memories,
and an algorithm in which agents update their distribution map. The results were obtained using
10 agents. As a reference, the Dunn index score of the correct clustering is shown.

50

4.3.4 Dunn index

Figure 4.13 shows the Dunn index scores for all tested algorithms with 10 agents on

both test databases.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory update agents

map update agents
Iris database Dunn index

(a) Iris database

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory update agents

map update agents
Wine database Dunn index

(b) Wine database

Figure 4.14: Dunn index score over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents update their short-term memories,
and an algorithm in which agents update their distribution map. The results were obtained using
30 agents. As a reference, the Dunn index score of the correct clustering is shown.

In the figure 4.13, for both databases, the map creating agents algorithm achieves

the best scores. In the Iris database, the best performing algorithm is the one with map

51

updating agents. This does not necessarily means it is finding good clusters as is shown

in figures 4.7,4.9,and 4.11. The performance of the other two algorithms is in between the

performance of the two just mentioned. In the wine database, the best performing algorithm

during the first cycles was the map updating algorithm. However, after 120,000 cycles

approximately, it starts dropping to become the worst performing.

Figure 4.14 shows the Dunn index scores for all four algorithms with 30 agents on the

two test databases. In this case, the map creating agents algorithm is still the best, however,

after a while and just with the Wine database, the basic short-term memory agents algorithm

becomes the best. The memory updating agents algorithm behaves exactly as before, i.e., it

makes no substantial improvement over time.

4.3.5 Number of clusters

Figures 4.15 and 4.16 show the number of clusters discovered over time with 10 and 30

agents respectively.

Two important things can be noted by inspecting figures 4.15 and 4.16. First, the

relative convergence speed toward a particular number of clusters is the same across both

databases and in spite of using a different number of agents. The slowest is the memory

updating agents algorithm, it is followed by the omniscient agents algorithm which is followed

by the simple short-term memory agents algorithm, followed by the map creating agents

algorithm. The fastest algorithm is the one with map updating agents. Perhaps too fast,

because it misses by far the correct number of clusters. Second, they show how the number

of found clusters decreases as the number of agents is increased.

52

 0

 2

 4

 6

 8

 10

 12

 14

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory update agents

map update agents
Correct No. of clusters

(a) Iris database

 0

 2

 4

 6

 8

 10

 12

 14

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory update agents

map update agents
Correct No. of clusters

(b) Wine database

Figure 4.15: Number of found clusters over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents update their short-term memories,
and an algorithm in which agents update their distribution map. The results were obtained using
10 agents. As a reference, the correct number of clusters is shown.

53

 0

 2

 4

 6

 8

 10

 12

 14

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory update agents

map update agents
Correct No. of clusters

(a) Iris database

 0

 2

 4

 6

 8

 10

 12

 14

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory update agents

map update agents
Correct No. of clusters

(b) Wine database

Figure 4.16: Number of found clusters over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents update their short-term memories,
and an algorithm in which agents update their distribution map. The results were obtained using
30 agents. As a reference, the correct number of clusters is shown.

4.4 Results of Experiments on Information Exchange

for Behavior Changes

The same algorithms that were tested in section 4.3 were used in this section. The

difference rely on the agents’ actions after information exchange. In this section, agents

54

change their dropping spot search trajectory based on the contents of other agents’ messages.

The results are also grouped by validity measure.

4.4.1 F -Measure

Figure 4.17 shows the F -Measure scores over time on the Iris Plant and Wine databases

using 10 agents. With the Iris database, the best performing algorithm is the one with map

creating agents, followed by the map exchange agents version. With the Wine database,

the best performing algorithm is the one with map creating agents but only during the first

600,000 cycles. After that, the best is the map exchange agents version. In both cases, the

short-term memory agents algorithm performs very poorly. The omniscient agents algorithm

is the second worst.

55

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory exchange agents

map exchange agents

(a) Iris database

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory exchange agents

map exchange agents

(b) Wine database

Figure 4.17: F -Measure scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents change their dropping spot search
trajectories based on the contents of other agents’ short-term memories, and an algorithm in which
agents change their dropping spot search trajectory based on other agents’ environment maps. The
results were obtained using 10 agents. A score value of 1 means perfect classification.

Figure 4.18 shows how the relative performance of the algorithms with agents exchang-

ing information about the distribution of data objects on the environment falls when using

30 agents. The best performing algorithm with the Iris database is the map creating agents

version. With the Wine database, the best algorithm is the omniscient agents algorithm.

The information exchange algorithms become the worst with the Wine database.

56

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory exchange agents

map exchange agents

(a) Iris database

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory exchange agents

map exchange agents

(b) Wine database

Figure 4.18: F -Measure scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents change their dropping spot search
trajectories based on the contents of other agents’ short-term memories, and an algorithm in which
agents change their dropping spot search trajectory based on other agents’ environment maps. The
results were obtained using 30 agents. A score value of 1 means perfect classification.

4.4.2 Rand Statistic

The Rand statistic scores over time for both algorithms on the Iris Plant and Wine

databases using 10 agents are shown in figure 4.19. With the Iris database, the best score is

obtained by the map creating agents algorithm. With the Wine database, the best perform-

57

ing algorithm is the omniscient agents algorithm, although its performance is equaled by the

information exchanging agents algorithms. With the Iris database, the worst is the noncom-

municating short-term memory agents algorithm. With the Wine database, the worst is the

map creating agents algorithm.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory exchange agents

map exchange agents

(a) Iris database

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory exchange agents

map exchange agents

(b) Wine database

Figure 4.19: Rand statistic scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents change their dropping spot search
trajectories based on the contents of other agents’ short-term memories, and an algorithm in which
agents change their dropping spot search trajectory based on other agents’ environment maps. The
results were obtained using 10 agents. A score value of 1 means perfect classification.

In figure 4.20 it can be seen how the performance of the communicating agents algo-

58

rithms degrades. The map creating agents algorithm is the worst with the Wine database.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory exchange agents

map exchange agents

(a) Iris database

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory exchange agents

map exchange agents

(b) Wine database

Figure 4.20: Rand statistic scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents change their dropping spot search
trajectories based on the contents of other agents’ short-term memories, and an algorithm in which
agents change their dropping spot search trajectory based on other agents’ environment maps. The
results were obtained using 30 agents. A score value of 1 means perfect classification.

4.4.3 Intra-cluster Variance

The plots seen in figure 4.21 correspond to the intra-cluster variance scores for the

tested algorithms with 10 agents on the two test databases. As was the case with the

59

F -Measure and the Rand statistic, the algorithms where agents can exchange information

perform better than the short-term memory algorithm without direct communication among

agents. However, they do not perform as well as the omniscient agents algorithm which in

both cases is the best performing algorithm. Remember that this measure is to be minimized.

 160

 180

 200

 220

 240

 260

 280

 300

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory exchange agents

map exchange agents
Iris database variance

(a) Iris database

 1000

 1200

 1400

 1600

 1800

 2000

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory exchange agents

map exchange agents
Wine database variance

(b) Wine database

Figure 4.21: Total intra-cluster variance over time for the Iris Plant and Wine databases of Lumer
and Faieta’s short-term memory agents algorithm, the same algorithm but with map creating
agents, an omniscient agents algorithm, an algorithm in which agents change their dropping spot
search trajectories based on the contents of other agents’ short-term memories, and an algorithm
in which agents change their dropping spot search trajectory based on other agents’ environment
maps. The results were obtained using 10 agents. As a reference, the total intra-cluster variance
of the correct clustering is shown.

60

Figure 4.22 shows how the total intra-cluster variance gap between the noncommunicat-

ing agents algorithm and the algorithms with information exchange capabilities gets smaller

as the number of agents is increased. With both databases, the curves even swap making

the information exchange versions the worst.

 160

 180

 200

 220

 240

 260

 280

 300

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory exchange agents

map exchange agents
Iris database variance

(a) Iris database

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory exchange agents

map exchange agents
Wine database variance

(b) Wine database

Figure 4.22: Total intra-cluster variance over time for the Iris Plant and Wine databases of Lumer
and Faieta’s short-term memory agents algorithm, the same algorithm but with map creating
agents, an omniscient agents algorithm, an algorithm in which agents change their dropping spot
search trajectories based on the contents of other agents’ short-term memories, and an algorithm
in which agents change their dropping spot search trajectory based on other agents’ environment
maps. The results were obtained using 30 agents. As a reference, the total intra-cluster variance
of the correct clustering is shown.

61

4.4.4 Dunn index

Figure 4.23 shows the Dunn index scores for all tested algorithms with 10 agents on

both test databases. On both databases, the best performing algorithm is the map creating

agents algorithm. It is followed by the map exchanging agents version, the memory exchange

version, the noncommunicating short-term memory agents algorithm, and the omniscient

agents algorithm. In that order.

In this case, the performance of the short-term memory agents algorithm without in-

formation exchange capabilities is better in the Iris database test and worse in the Wine

database. The omniscient agents algorithm is the worst with both databases.

62

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory exchange agents

map exchange agents
Iris database Dunn index

(a) Iris database

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory exchange agents

map exchange agents
Wine database Dunn index

(b) Wine database

Figure 4.23: Dunn index scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents change their dropping spot search
trajectories based on the contents of other agents’ short-term memories, and an algorithm in which
agents change their dropping spot search trajectory based on other agents’ environment maps. The
results were obtained using 10 agents. As a reference, the Dunn index of the correct clustering is
shown.

Figure 4.24 shows the Dunn index scores for the tested algorithms using 30 agents.

With the Iris database, the relative performance seen before is maintained. With the Wine

database, all algorithms score almost the same except the map creating agents algorithm

which is the worst.

63

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory exchange agents

map exchange agents
Iris database Dunn index

(a) Iris database

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory exchange agents

map exchange agents
Wine database Dunn index

(b) Wine database

Figure 4.24: Dunn index scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents change their dropping spot search
trajectories based on the contents of other agents’ short-term memories, and an algorithm in which
agents change their dropping spot search trajectory based on other agents’ environment maps. The
results were obtained using 30 agents. As a reference, the Dunn index of the correct clustering is
shown.

4.4.5 Number of clusters

Figures 4.25 and 4.26 show the number of clusters discovered by the tested algorithms

over time with 10 and 30 agents respectively.

64

 0

 2

 4

 6

 8

 10

 12

 14

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory exchange agents

map exchange agents
Correct No. of clusters

(a) Iris database

 0

 2

 4

 6

 8

 10

 12

 14

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory exchange agents

map exchange agents
Correct No. of clusters

(b) Wine database

Figure 4.25: Number of found clusters over time for the Iris Plant and Wine databases of Lumer
and Faieta’s short-term memory agents algorithm, the same algorithm but with map creating
agents, an omniscient agents algorithm, an algorithm in which agents change their dropping spot
search trajectories based on the contents of other agents’ short-term memories, and an algorithm
in which agents change their dropping spot search trajectory based on other agents’ environment
maps. The results were obtained using 10 agents. As a reference, the correct number of clusters is
shown.

65

 0

 2

 4

 6

 8

 10

 12

 14

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory exchange agents

map exchange agents
Correct No. of clusters

(a) Iris database

 0

 2

 4

 6

 8

 10

 12

 14

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

short-term memory agents
map agents

omniscient agents
memory exchange agents

map exchange agents
Correct No. of clusters

(b) Wine database

Figure 4.26: Number of found clusters over time for the Iris Plant and Wine databases of Lumer
and Faieta’s short-term memory agents algorithm, the same algorithm but with map creating
agents, an omniscient agents algorithm, an algorithm in which agents change their dropping spot
search trajectories based on the contents of other agents’ short-term memories, and an algorithm
in which agents change their dropping spot search trajectory based on other agents’ environment
maps. The results were obtained using 30 agents. As a reference, the correct number of clusters is
shown.

Figure 4.26 shows how the number of clusters decreases as the number of agents in-

creases. This confirms the behavior observed in the previous experiment series. In both

figures, the algorithm with map-creating agents converges faster than the others.

66

4.5 Discussion of Results

Two series of experiments were run. In both, agents exchanged directly information

about the spatial distribution of data objects on the environment. They only differed in

the way agents used that information. In the first series of experiments, agents used the

information provided by other agents to update their own environment representations. In

these experiments, agents wanted to have an up-to-date environment representation to bias

their dropping spot search to the most promising region in the environment. In the second

one, loaded agents that already were in search for a dropping spot, used other agents’

information to change their search trajectories if the information they received was useful

for their immediate purposes.

Let us analyze our results starting with speed issues. It is clear from figures 4.15,

4.16, 4.25, and 4.26 that the omniscient agents algorithm has a slower convergence speed

toward a given number of clusters than the simple short-term memory agents algorithm. In

other words, having complete knowledge about the spatial distribution of objects does not

help in finding the correct number of clusters in a given database faster than with partial

knowledge. It is not true, however, that the less information available to the agents, the

faster the convergence to the correct number of clusters. This is confirmed by Lumer and

Faieta in reference [22] and this very fact was indeed the motivation to modify the basic

algorithm in which agents did not have any knowledge about the distribution of objects in

the environment.

Among the factors that affected the convergence speed in our experiments is the number

of agents. Comparing the obtained results with 10 and 30 agents, it can be seen that the

more agents in the algorithm, the faster the convergence speed. Another important aspect

to note is that the number of found clusters is also altered, with fewer clusters when using

more agents.

In the first series of experiments, the slowest algorithm was the one with memory

updating agents, and the fastest was the map updating agents algorithm. The explanation

of this phenomenon is related with how accurate agents could approximate the environment

state. More on this later. In the second series of experiments, since agents did not try to

approximate the environment state, the behavior of the communicating agents algorithms

was completely different. The algorithm with map creating agents was again the fastest, and

even though during the first cycles the convergence speed of the memory exchanging agents

algorithm is slower than that of the other algorithms, it is the second fastest in the end.

In terms of clustering quality, the omniscient agents algorithm is better than the short-

term memory agents algorithm, except in figures 4.13, 4.14, 4.23, and 4.24 that show the

Dunn index scores. However, as was pointed out earlier, having a high Dunn index score does

not necessarily implies a good clustering. In fact, if we recall that in the Iris database two

clusters are not linearly separable, a high Dunn index may be an indication of a confusion,

i.e., the algorithm considering two or more clusters as just one. This clearly increases the

67

measure that tries to identify compact and well separated clusters.

The memory updating agents algorithm approximates the omniscient agents algorithm

and that is reflected by the shapes of their response functions. The main difference between

them is an (often negative) offset. However, it is an indication of the approximation task it

was supposed to perform. We cannot say the same for the map updating agents algorithm,

because in all the experiments it is the worst performing algorithm. Future work will have to

focus on this issue, since only one parameter set was used, and it surely affected the obtained

performance.

Something important to note is that when agents use information for updating their

own environment representations, the overall performance is quite bad, and does not offer

any advantage over the omniscient agents algorithm nor the simple short-term memory

agents algorithm. However, if they only used the information to select the best possible

dropping location, as was done in the second series of experiments, the overall performance

is improved. This performance improvement takes place only when using 10 agents, because

with 30 agents, the performance drops again.

4.6 Conclusions

The goal of letting agents in ant-based clustering algorithms communicate, is to allow

them share knowledge about the spatial distribution of data objects on the environment to

create better clusters than when they cannot.

In the problem of communication, besides the way agents can exchange information,

there are other participating variables such as what to exchange, when to do it, or what to

do with new information. The first issue, that is, the way in which agents can exchange

information was partially studied in this chapter and will be extended in the next one, this

chapter dealt with direct information exchange among agents, the next one will deal with

indirect information exchange. The second issue can be studied if we consider that agents

individually maintain a model of the environment and that the exchanged information will

serve to enrich or update that particular representation. This was done first, by using an

extension of the basic short-term memory agents algorithm proposed by Lumer and Faieta,

and then using agents that create maps of their environment as they explore it. The third

issue, that is, the problem of establishing the best possible moment to exchange information,

was solved by going back to the natural inspiration of this technique. In addition to the

indirect communication through pheromones, real social insects also interact directly. So, to

choose the moment when they meet on the grid as the right moment to exchange information,

seemed the most natural and intuitively appealing solution to this problem. The fourth issue,

the what to do with the information from other agents, was explored through two different

strategies. In the first one, agents enriched and updated their environment representations

with the hope that they approximate the real state of the environment. Once an agent had

picked up an object from the environment, using its environment representation, it could

68

decide to go to the best possible region on which to drop that object. In the second strategy,

agents that had already picked up an object, could “change their minds” about the best

dropping spot based on other agents’ information.

The results obtained in the first series of experiments, those with agents updating their

environment representations, are somewhat discouraging. The worst performing algorithm

is the one with map updating agents, and the second worst is the memory updating agents

algorithm. In the first case, further experimentation must be done to know what went wrong

in the experiments. It is very likely that the parameter set used in the experiments was not

the correct one. We leave this issue as future work. In the case of the memory updating

agents algorithm, the relatively poor performance is not as discouraging as is the obtained

with map creating agents. The negative offset observed in the response plots with respect

to the omniscient agents algorithm response plots, is an indication of the correct, although

not perfect, approximation to the real state of the environment.

The results obtained with dropping spot search trajectory changing agents are quite

the opposite from the previous ones. In this case, the clustering quality is improved by the

communicating agents algorithms. They produce even better clusters than the version with

omniscient agents. This is true only when using 10 agents. With 30 agents, the relative

performance of these algorithms is deteriorated. This suggests the existence of some critical

number of agents that should behave this way with a given database. Determining the

optimum number of agents for a given clustering task remains a research issue.

69

70

Chapter 5

Intentional indirect communication among agents in

ant-based clustering algorithms

This chapter presents the effects on the quality of the clustering obtained by using

intentional indirect communication among agents in ant-based clustering algorithms. Agents

lay packets which contain information about data distribution on the environment for others

to pick and use. Although agents modify the environment and respond accordingly, this kind

of communication differs from a purely stigmergic one in that this is intentional. An agent

lays information packets for others to exploit, it is not just a result of its own actions.

As with the experiments with direct communication, agents use the information packets

to update their environment representations and to bias their search for dropping locations.

In the first two series of experiments, agents lay information packets with a certain frequency.

A second laying strategy is also explored in which agents lay information only when they

have modified the environment.

5.1 Indirect communication strategies

In the previous chapter information exchange among agents occurs only when two

or more agents coincide on the grid. Two different agent population sizes were tried to

explore the effects of increasing the number of exchanges during a simulation run since the

number of encounters rises as the agent density in the grid increases. This strategy has two

disadvantages: (i) even when the number of exchanges increases, we cannot expect many of

them to happen since the number of agents must be kept small (for performance reasons),

and (ii) many exchanges do not have any effect since agents walk in a randomly fashion, i.e.,

two agents coincide many times, over and over again, before they follow different trajectories.

If we let agents lay information on their environment, it could be possible to increase

dramatically the number of exchanges without even increasing the number of agents. In this

chapter this idea is explored. The information packets laid on the environment in the form

of memory vectors or growing neural gas networks, are references to the original structures

inside the agents that laid them. In other words, information packets always have updated

information and therefore, they always give trustworthy information to their consumers. The

71

only parameter we have available to experiment with is the laying frequency.

As with the experiments of the previous chapter, the information is used in two different

ways; to update the agents’ representation of the environment and to bias their random walk

in search for good dropping locations. The output quality is compared with the one obtained

by the omniscient agents algorithm and the noncommunicating agents algorithms.

5.2 Experimental Setup

The test databases that were used for the experiments with direct communication, were

also used for the experiments with indirect communication. The agent models, environment

state representations and updating operations were also the same. See chapter 4, section 4.2

for details.

5.2.1 Experiments Design

The same experimental strategy used in the direct communication experiments was

used for the experiments with indirect communication, except for the frequency laying pa-

rameter. The experiments explore the effects of letting agents lay information packets every

10, 100, and 1000 cycles. As before, the experiments were run with 10 and 30 agents. These

experiments correspond to a periodic information laying policy. We conducted another series

of experiments with an adaptive information laying policy in which agents lay information

packets only after they have just modified the environment and a given delay has elapsed.

In this case, three laying delays were tested: 1, 10 and 100 cycles.

5.3 Results of Experiments on Information Exchange

for Environment Representation Updates using a

Periodic Laying Policy

Five different algorithms were tested1, see chapter 4, section 4.2 for details. In the

experiments run in this section, the update or change in a search trajectory, is done whenever

an agent comes across an information packet on the environment. The results are presented

by validity measure.

5.3.1 F -Measure

Figure 5.1 shows the F -Measure scores over time obtained by the tested algorithms on

the Iris Plant and Wine databases using 10 agents. With the short-term memory model,

1Although strictly speaking they are only three different algorithms, using a different frequency alters
importantly the behavior of the algorithm, so we will treat them as if they were in fact distinct algorithms.

72

the algorithm in which agents have a short-term memory and do not communicate with

each other obtains the highest score with both test databases. However, near the end of the

simulation all algorithms perform almost equally well. With the growing neural gas model,

i.e., with the self-organizing map as a representation tool, the best performing algorithm is

the simple algorithm with noncommunicating agents. With the Wine database it is clear the

effect of using different laying frequencies, being the algorithm with a frequency of 10 cycles

the best and the one with a 1000 cycles the worst.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(a) Short-term memory model on Iris
database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(b) Growing Neural Gas model on Iris
database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(c) Short-term memory model on Wine
database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(d) Growing Neural Gas model on Wine
database

Figure 5.1: F -Measure scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents update their short-term memories,
and an algorithm in which agents update their distribution map. The results were obtained using
10 agents using a periodic laying policy. A score value of 1 means perfect classification.

Figure 5.2 shows the F -Measure scores over time obtained by the tested algorithms on

the Iris Plant and Wine databases using 30 agents. In all four graphs, it can be seen how the

73

algorithm with noncommunicating agents performs better than the others at the beginning

of the simulation. In the end, the best algorithm is the omniscient agents algorithm. The

performance of the representation updating algorithms degrades with 30 agents.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(a) Short-term memory model on Iris
database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(b) Growing Neural Gas model on Iris
database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(c) Short-term memory model on Wine
database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(d) Growing Neural Gas model on Wine
database

Figure 5.2: F -Measure scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents update their short-term memories,
and an algorithm in which agents update their distribution map. The results were obtained using
30 agents using a periodic laying policy. A score value of 1 means perfect classification.

5.3.2 Rand Statistic

The Rand statistic scores over time for all tested algorithms on the Iris Plant and Wine

databases using 10 agents using a periodic laying policy are shown in figure 5.3.

74

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(a) Short-term memory model on Iris
database

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(b) Growing Neural Gas model on Iris
database

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(c) Short-term memory model on Wine
database

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(d) Growing Neural Gas model on Wine
database

Figure 5.3: Rand statistic scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents update their short-term memories,
and an algorithm in which agents update their distribution map. The results were obtained using
10 agents using a periodic laying policy. A score value of 1 means perfect classification.

With the short-term memory model, the best performing algorithm is the one with

omniscient agents. All other algorithms perform almost the same. With the growing neural

gas model, with the Iris database, the best algorithm is the simple map creating agents

algorithm and with the Wine database, the best algorithm is again the omniscient agents

algorithm. Again it is clear how the higher the laying frequency the better when using 10

agents and with the Wine database.

Figure 5.4 shows the Rand statistic scores with 30 agents using a periodic information

laying policy. The behavior pattern observed in figure 5.3 is also observed in this figure.

75

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(a) Short-term memory model on Iris
database

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(b) Growing Neural Gas model on Iris
database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(c) Short-term memory model on Wine
database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(d) Growing Neural Gas model on Wine
database

Figure 5.4: Rand statistic scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents update their short-term memories,
and an algorithm in which agents update their distribution map. The results were obtained using
30 agents using a periodic laying policy. A score value of 1 means perfect classification.

5.3.3 Intra-cluster Variance

The plots seen in figure 5.5 correspond to the intra-cluster variance scores for all the

tested algorithms with 10 agents using a periodic laying policy.

76

 150

 200

 250

 300

 350

 400

 450

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Iris database variance

(a) Short-term memory model on Iris
database

 150

 200

 250

 300

 350

 400

 450

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Iris database variance

(b) Growing Neural Gas model on Iris
database

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Wine database variance

(c) Short-term memory model on Wine
database

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Wine database variance

(d) Growing Neural Gas model on Wine
database

Figure 5.5: Total intra-cluster variance scores over time for the Iris Plant and Wine databases
of Lumer and Faieta’s short-term memory agents algorithm, the same algorithm but with map
creating agents, an omniscient agents algorithm, an algorithm in which agents update their short-
term memories, and an algorithm in which agents update their distribution map. The results were
obtained using 10 agents using a periodic laying policy. As a reference, the total intra-cluster
variance of the correct clustering is shown.

In all four graphs the best performing algorithm is the omniscient agents algorithm.

With the both databases, using the short-term memory model, all other four algorithms

perform the same. With the growing neural gas model, the omniscient agents algorithm

is followed by the simple noncommunicating agents algorithm. The other three algorithms

follow the pattern observed before, i.e., a frequency of 10 cycles is better than 100 and 1000

cycles.

As before, in figure 5.6 we can see the same behavior pattern.

77

 150

 200

 250

 300

 350

 400

 450

 500

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Iris database variance

(a) Short-term memory model on Iris
database

 150

 200

 250

 300

 350

 400

 450

 500

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Iris database variance

(b) Growing Neural Gas model on Iris
database

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Wine database variance

(c) Short-term memory model on Wine
database

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Wine database variance

(d) Growing Neural Gas model on Wine
database

Figure 5.6: Total intra-cluster variance scores over time for the Iris Plant and Wine databases
of Lumer and Faieta’s short-term memory agents algorithm, the same algorithm but with map
creating agents, an omniscient agents algorithm, an algorithm in which agents update their short-
term memories, and an algorithm in which agents update their distribution map. The results were
obtained using 30 agents using a periodic laying policy. As a reference, the total intra-cluster
variance of the correct clustering is shown.

5.3.4 Dunn index

Figure 5.7 shows the Dunn index scores for all the tested algorithms with 10 agents on

the test databases.

78

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Iris database Dunn index

(a) Short-term memory model on Iris
database

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Iris database Dunn index

(b) Growing Neural Gas model on Iris
database

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Wine database Dunn index

(c) Short-term memory model on Wine
database

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Wine database Dunn index

(d) Growing Neural Gas model on Wine
database

Figure 5.7: Dunn index scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents update their short-term memories,
and an algorithm in which agents update their distribution map. The results were obtained using
10 agents using a periodic laying policy. As a reference, the Dunn index of the correct clustering is
shown.

With the short-term memory model, all algorithms perform almost the same. although

its clear that the best performing algorithm in this case is the simple noncommunicating

agents algorithm. With the growing neural gas model, the best performing algorithm is

the simple noncommunicating agents algorithm. In this case, with the Iris database, the

behavior pattern exhibited by the communicating agents algorithms shows up again. Notice

the difference in their absolute performance during the first 200,000 cycles.

Figure 5.8 shows the Dunn index scores for the tested algorithms using 30 agents. With

the short-term memory model and the both databases, the same behavior pattern reappears.

With the growing neural gas model, the communicating agents algorithms perform terribly

79

bad with the Wine database.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Iris database Dunn index

(a) Short-term memory model on Iris
database

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Iris database Dunn index

(b) Growing Neural Gas model on Iris
database

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Wine database Dunn index

(c) Short-term memory model on Wine
database

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Wine database Dunn index

(d) Growing Neural Gas model on Wine
database

Figure 5.8: Dunn index scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents update their short-term memories,
and an algorithm in which agents update their distribution map. The results were obtained using
30 agents using a periodic laying policy. As a reference, the Dunn index of the correct clustering is
shown.

5.3.5 Number of clusters

Figures 5.9 and 5.10 show the number of clusters discovered by the tested algorithms

over time with 10 and 30 agents respectively.

80

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Correct No. of clusters

(a) Short-term memory model on Iris
database

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Correct No. of clusters

(b) Growing Neural Gas model on Iris
database

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Correct No. of clusters

(c) Short-term memory model on Wine
database

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Correct No. of clusters

(d) Growing Neural Gas model on Wine
database

Figure 5.9: Number of found clusters over time in the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents update their short-term memories,
and an algorithm in which agents update their distribution map. The results were obtained using
10 agents using a periodic laying policy. As a reference, the correct number of clusters is shown.

81

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Correct No. of clusters

(a) Short-term memory model on Iris
database

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Correct No. of clusters

(b) Growing Neural Gas model on Iris
database

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Correct No. of clusters

(c) Short-term memory model on Wine
database

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Correct No. of clusters

(d) Growing Neural Gas model on Wine
database

Figure 5.10: Number of found clusters over time in the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents update their short-term memories,
and an algorithm in which agents update their distribution map. The results were obtained using
30 agents using a periodic laying policy. As a reference, the correct number of clusters is shown.

In all eight graphs, it is clear that the omniscient agents algorithm converges slower

than any simple noncommunicating agents algorithm. The communicating agents algorithms

converge faster than the omniscient agents algorithm. In some cases they converge to just

one cluster.

82

5.4 Results of Experiments on Information Exchange

for Behavior Changes using a Periodic Laying Pol-

icy

This section presents the results of the ant-based clustering algorithms using agents that

change their dropping spot search trajectories based on the information they come across in

the environment.

5.4.1 F -Measure

In figure 5.11 we can see the F -Measure scores over time for all tested algorithms on

the Iris Plant and the Wine databases using 10 agents. With the short-term memory model

the communicating agents algorithms perform better than the simple noncommunicating

agents and the omniscient agents algorithms. With the growing neural gas model, the best

performing algorithm is the noncommunicating agents algorithm. In this case, the best

performing communicating agents algorithm is the one using a laying frequency of 1000

cycles. The worst of them is the one using 10 cycles.

Figure 5.12 shows the results obtained using 30 agents. With the short-term memory

model, the performance of all three communicating agents algorithms degrades. The same

is true with the growing neural gas model; however, the relative difference among their

performance is maintained.

83

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(a) Short-term memory model on Iris
database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(b) Growing Neural Gas model on Iris
database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(c) Short-term memory model on Wine
database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(d) Growing Neural Gas model on Wine
database

Figure 5.11: F -Measure scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents change their dropping spot search
trajectories based on the contents of other agents’ short-term memories, and an algorithm in which
agents change their dropping spot search trajectory based on other agents’ environment maps. The
results were obtained using 10 agents using a periodic laying policy. A score value of 1 means
perfect classification.

84

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(a) Short-term memory model on Iris
database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(b) Growing Neural Gas model on Iris
database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(c) Short-term memory model on Wine
database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(d) Growing Neural Gas model on Wine
database

Figure 5.12: F -Measure scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents change their dropping spot search
trajectories based on the contents of other agents’ short-term memories, and an algorithm in which
agents change their dropping spot search trajectory based on other agents’ environment maps. The
results were obtained using 30 agents using a periodic laying policy. A score value of 1 means
perfect classification.

5.4.2 Rand Statistic

Figure 5.13 shows the Rand statistic scores over time using 10 agents following a pe-

riodic information laying policy. With the short-term memory model, the communicating

agents algorithms perform terribly bad. At the end of the simulation the omniscient agents

algorithm becomes the best performing algorithm. With the growing neural gas model,

the communicating agents algorithms show a clear pattern: the more frequently they lay

information on the environment the worse.

85

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(a) Short-term memory model on Iris
database

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(b) Growing Neural Gas model on Iris
database

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(c) Short-term memory model on Wine
database

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(d) Growing Neural Gas model on Wine
database

Figure 5.13: Rand statistic scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents change their dropping spot search
trajectories based on the contents of other agents’ short-term memories, and an algorithm in which
agents change their dropping spot search trajectory based on other agents’ environment maps. The
results were obtained using 10 agents using a periodic laying policy. A score value of 1 means
perfect classification.

In figure 5.14 the behavior pattern just described shows again. In this case using 30

agents.

86

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(a) Short-term memory model on Iris
database

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(b) Growing Neural Gas model on Iris
database

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(c) Short-term memory model on Wine
database

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles

(d) Growing Neural Gas model on Wine
database

Figure 5.14: Rand statistic scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents change their dropping spot search
trajectories based on the contents of other agents’ short-term memories, and an algorithm in which
agents change their dropping spot search trajectory based on other agents’ environment maps. The
results were obtained using 30 agents using a periodic laying policy. A score value of 1 means
perfect classification.

5.4.3 Intra-cluster Variance

In figures 5.15 and 5.16 we can see the total intra-cluster variance scores over time

for all tested algorithms on the Iris Plant and the Wine databases using 10 and 30 agents

respectively. The best performing algorithm is the omniscient agents algorithm, followed by

the noncommunicating agents algorithm in every case. The algorithm in which agents lay

information on the grid every 10 cycles is the worst of all.

87

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Iris database variance

(a) Short-term memory model on Iris
database

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Iris database variance

(b) Growing Neural Gas model on Iris
database

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Wine database variance

(c) Short-term memory model on Wine
database

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Wine database variance

(d) Growing Neural Gas model on Wine
database

Figure 5.15: Total intra-cluster variance scores over time for the Iris Plant and Wine databases of
Lumer and Faieta’s short-term memory agents algorithm, the same algorithm but with map creating
agents, an omniscient agents algorithm, an algorithm in which agents change their dropping spot
search trajectories based on the contents of other agents’ short-term memories, and an algorithm
in which agents change their dropping spot search trajectory based on other agents’ environment
maps. The results were obtained using 10 agents using a periodic laying policy. As a reference, the
total intra-cluster variance of the correct clustering is shown.

88

 200

 300

 400

 500

 600

 700

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Iris database variance

(a) Short-term memory model on Iris
database

 200

 300

 400

 500

 600

 700

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Iris database variance

(b) Growing Neural Gas model on Iris
database

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Wine database variance

(c) Short-term memory model on Wine
database

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Wine database variance

(d) Growing Neural Gas model on Wine
database

Figure 5.16: Total intra-cluster variance scores over time for the Iris Plant and Wine databases of
Lumer and Faieta’s short-term memory agents algorithm, the same algorithm but with map creating
agents, an omniscient agents algorithm, an algorithm in which agents change their dropping spot
search trajectories based on the contents of other agents’ short-term memories, and an algorithm
in which agents change their dropping spot search trajectory based on other agents’ environment
maps. The results were obtained using 30 agents using a periodic laying policy. As a reference, the
total intra-cluster variance of the correct clustering is shown.

5.4.4 Dunn index

Figure 5.17 shows the Dunn index scores obtained by the tested algorithms with 10

agents. With the short-term memory model, the communicating agents algorithms are the

best. With the Wine database, they reach a maximum and start decreasing. With the

growing neural gas model and with the Iris database, they perform better than the omniscient

agents algorithm but worse than the noncommunicating agents algorithm.

89

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Iris database Dunn index

(a) Short-term memory model on Iris
database

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Iris database Dunn index

(b) Growing Neural Gas model on Iris
database

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Wine database Dunn index

(c) Short-term memory model on Wine
database

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Wine database Dunn index

(d) Growing Neural Gas model on Wine
database

Figure 5.17: Dunn index scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents change their dropping spot search
trajectories based on the contents of other agents’ short-term memories, and an algorithm in which
agents change their dropping spot search trajectory based on other agents’ environment maps. The
results were obtained using 10 agents using a periodic laying policy. As a reference, the Dunn index
of the correct clustering is shown.

In figure 5.18 the Dunn index scores obtained by the tested algorithms with 30 agents

are shown. In all cases except one, the communicating agents algorithms start performing

quite well. However, in the end they converge to a value near zero.

90

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Iris database Dunn index

(a) Short-term memory model on Iris
database

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Iris database Dunn index

(b) Growing Neural Gas model on Iris
database

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Wine database Dunn index

(c) Short-term memory model on Wine
database

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Wine database Dunn index

(d) Growing Neural Gas model on Wine
database

Figure 5.18: Dunn index scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents change their dropping spot search
trajectories based on the contents of other agents’ short-term memories, and an algorithm in which
agents change their dropping spot search trajectory based on other agents’ environment maps. The
results were obtained using 30 agents using a periodic laying policy. As a reference, the Dunn index
of the correct clustering is shown.

5.4.5 Number of clusters

Figures 5.19 and 5.20 show the number of clusters discovered by the tested algorithms

over time with 10 and 30 agents respectively.

91

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Correct No. of clusters

(a) Short-term memory model on Iris
database

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Correct No. of clusters

(b) Growing Neural Gas model on Iris
database

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Correct No. of clusters

(c) Short-term memory model on Wine
database

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Correct No. of clusters

(d) Growing Neural Gas model on Wine
database

Figure 5.19: Number of found clusters over time in the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents change their dropping spot search
trajectories based on the contents of other agents’ short-term memories, and an algorithm in which
agents change their dropping spot search trajectory based on other agents’ environment maps. The
results were obtained using 10 agents using a periodic laying policy. As a reference, the correct
number of clusters is shown.

In all cases, the slowest algorithm is the omniscient agents algorithm. It is followed by

the noncommunicating agents algorithms. It can be seen how these algorithms converge to

two or one cluster.

92

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Correct No. of clusters

(a) Short-term memory model on Iris
database

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Correct No. of clusters

(b) Growing Neural Gas model on Iris
database

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Short-term memory agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Correct No. of clusters

(c) Short-term memory model on Wine
database

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Map creating agents
Omniscient agents

10 cycles
100 cycles

1000 cycles
Correct No. of clusters

(d) Growing Neural Gas model on Wine
database

Figure 5.20: Number of found clusters over time in the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents change their dropping spot search
trajectories based on the contents of other agents’ short-term memories, and an algorithm in which
agents change their dropping spot search trajectory based on other agents’ environment maps. The
results were obtained using 30 agents using a periodic laying policy. As a reference, the correct
number of clusters is shown.

5.5 Results of Experiments on Information Exchange

for Environment Representation Updates using an

Adaptive Laying Policy

This section presents the results of the ant-based clustering algorithms using agents

that update their environment representations with the information packets they find on the

93

environment as they move through it.

5.5.1 F -Measure

Figure 5.21 shows the F -Measure scores obtained by the tested algorithms with 10

agents on the test databases.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(a) Short-term memory model on Iris
database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06
F-

m
ea

su
re

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(b) Growing Neural Gas model on Iris
database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(c) Short-term memory model on Wine
database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(d) Growing Neural Gas model on Wine
database

Figure 5.21: F -Measure scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents update their short-term memories,
and an algorithm in which agents update their distribution map. The results were obtained using
10 agents using an adaptive laying policy. A score value of 1 means perfect classification.

With the short-term memory model, the best performing algorithm is the one with

noncommunicating agents. With the growing neural gas model, the best algorithm during the

first simulation cycles is the map updating agents algorithm when agents wait for 100 cycles

94

before laying an information packet after a modification. After 200,000 cycles approximately,

the simple noncommunicating agents algorithm becomes the best performing algorithm.

The graphs shown in figure 5.22 follow the same trend.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(a) Short-term memory model on Iris
database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(b) Growing Neural Gas model on Iris
database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(c) Short-term memory model on Wine
database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(d) Growing Neural Gas model on Wine
database

Figure 5.22: F -Measure scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents update their short-term memories,
and an algorithm in which agents update their distribution map. The results were obtained using
30 agents using an adaptive laying policy. A score value of 1 means perfect classification.

5.5.2 Rand Statistic

In figures 5.23 and 5.24 it can be seen that the omniscient agents algorithm is the

best performing algorithm with the short-term model. The worst algorithm is the one with

a delay of 1 cycle. With the growing neural gas model it happens the same thing except

that, in the Iris database, the best performing algorithm is the noncommunicating agents

95

algorithm.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(a) Short-term memory model on Iris
database

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(b) Growing Neural Gas model on Iris
database

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(c) Short-term memory model on Wine
database

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(d) Growing Neural Gas model on Wine
database

Figure 5.23: Rand statistic scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents update their short-term memories,
and an algorithm in which agents update their distribution map. The results were obtained using
10 agents using an adaptive laying policy. A score value of 1 means perfect classification.

96

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(a) Short-term memory model on Iris
database

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(b) Growing Neural Gas model on Iris
database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(c) Short-term memory model on Wine
database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(d) Growing Neural Gas model on Wine
database

Figure 5.24: Rand statistic scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents update their short-term memories,
and an algorithm in which agents update their distribution map. The results were obtained using
30 agents using an adaptive laying policy. A score value of 1 means perfect classification.

5.5.3 Intra-cluster Variance

In figures 5.25 and 5.26 we can see the total intra-cluster variance scores over time

for all tested algorithms on the Iris Plant and the Wine databases using 10 and 30 agents

respectively. The algorithm with the lowest total intra-cluster variance is the omniscient

agents algorithm. The second with lowest variance is the noncommunicating agents algo-

rithms. The pattern we have seen before shows up again here, i.e., the algorithm with agents

waiting 1 cycle after having manipulated the environment to lay an information packet on

the environment is the worst performing algorithm, and the longer the delay, the better.

97

 150

 200

 250

 300

 350

 400

 450

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Iris database variance

(a) Short-term memory model on Iris
database

 150

 200

 250

 300

 350

 400

 450

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Iris database variance

(b) Growing Neural Gas model on Iris
database

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Wine database variance

(c) Short-term memory model on Wine
database

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Wine database variance

(d) Growing Neural Gas model on Wine
database

Figure 5.25: Total intra-cluster variance scores over time for the Iris Plant and Wine databases
of Lumer and Faieta’s short-term memory agents algorithm, the same algorithm but with map
creating agents, an omniscient agents algorithm, an algorithm in which agents update their short-
term memories, and an algorithm in which agents update their distribution map. The results were
obtained using 10 agents using an adaptive laying policy. As a reference, the total intra-cluster
variance of the correct clustering is shown.

98

 150

 200

 250

 300

 350

 400

 450

 500

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Iris database variance

(a) Short-term memory model on Iris
database

 150

 200

 250

 300

 350

 400

 450

 500

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Iris database variance

(b) Growing Neural Gas model on Iris
database

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Wine database variance

(c) Short-term memory model on Wine
database

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Wine database variance

(d) Growing Neural Gas model on Wine
database

Figure 5.26: Total intra-cluster variance scores over time for the Iris Plant and Wine databases
of Lumer and Faieta’s short-term memory agents algorithm, the same algorithm but with map
creating agents, an omniscient agents algorithm, an algorithm in which agents update their short-
term memories, and an algorithm in which agents update their distribution map. The results were
obtained using 30 agents using an adaptive laying policy. As a reference, the total intra-cluster
variance of the correct clustering is shown.

5.5.4 Dunn index

In figure 5.27 it is shown the Dunn index scores when using 10 agents. With the

short-term memory the algorithm with highest scores is the noncommunicating short-term

memory algorithm. With the Wine database it performs equally well than the omniscient

agents algorithm. With the growing neural gas model the noncommunicating agents and the

10 cycles delay agents algorithms are the best in both databases.

99

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Iris database Dunn index

(a) Short-term memory model on Iris
database

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Iris database Dunn index

(b) Growing Neural Gas model on Iris
database

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Wine database Dunn index

(c) Short-term memory model on Wine
database

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Wine database Dunn index

(d) Growing Neural Gas model on Wine
database

Figure 5.27: Dunn index scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents update their short-term memories,
and an algorithm in which agents update their distribution map. The results were obtained using
10 agents using an adaptive laying policy. As a reference, the Dunn index of the correct clustering
is shown.

In figure 5.28 one can see how the performance of all algorithms degrades, specially of

the communicating agents algorithms.

100

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Iris database Dunn index

(a) Short-term memory model on Iris
database

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Iris database Dunn index

(b) Growing Neural Gas model on Iris
database

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Wine database Dunn index

(c) Short-term memory model on Wine
database

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Wine database Dunn index

(d) Growing Neural Gas model on Wine
database

Figure 5.28: Dunn index scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents update their short-term memories,
and an algorithm in which agents update their distribution map. The results were obtained using
30 agents using an adaptive laying policy. As a reference, the Dunn index of the correct clustering
is shown.

5.5.5 Number of clusters

Figures 5.29 and 5.30 show the convergence of all tested algorithms. As was seen before,

the slowest algorithm is the omniscient agents algorithm. No clear relationship can be seen

among the communicating agents algorithms except, perhaps, when using 30 agents with

the the Iris database and the short-term memory model.

101

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Correct No. of clusters

(a) Short-term memory model on Iris
database

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Correct No. of clusters

(b) Growing Neural Gas model on Iris
database

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Correct No. of clusters

(c) Short-term memory model on Wine
database

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Correct No. of clusters

(d) Growing Neural Gas model on Wine
database

Figure 5.29: Number of found clusters over time in the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents update their short-term memories,
and an algorithm in which agents update their distribution map. The results were obtained using
10 agents using an adaptive laying policy. As a reference, the correct number of clusters is shown.

102

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Correct No. of clusters

(a) Short-term memory model on Iris
database

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Correct No. of clusters

(b) Growing Neural Gas model on Iris
database

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Correct No. of clusters

(c) Short-term memory model on Wine
database

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Correct No. of clusters

(d) Growing Neural Gas model on Wine
database

Figure 5.30: Number of found clusters over time in the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents update their short-term memories,
and an algorithm in which agents update their distribution map. The results were obtained using
30 agents using an adaptive laying policy. As a reference, the correct number of clusters is shown.

5.6 Results of Experiments on Information Exchange

for Behavior Changes using an Adaptive Laying

Policy

This section presents the results of the ant-based clustering algorithms using agents that

change their dropping spot search trajectories based on the information they come across in

the environment. The information is laid on the environment after that a given number of

simulation cycles have elapsed after a modification to the environment.

103

5.6.1 F -Measure

Figure 5.31 shows the F -Measure scores over time for the tested algorithms.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(a) Short-term memory model on Iris
database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(b) Growing Neural Gas model on Iris
database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(c) Short-term memory model on Wine
database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(d) Growing Neural Gas model on Wine
database

Figure 5.31: F -Measure scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents change their dropping spot search
trajectories based on the contents of other agents’ short-term memories, and an algorithm in which
agents change their dropping spot search trajectory based on other agents’ environment maps. The
results were obtained using 10 agents using an adaptive laying policy. A score value of 1 means
perfect classification.

With the short-term memory model, the performance of the communicating agents al-

gorithms is better than the omniscient agents and the noncommunicating agents algorithms.

However, the performance drops steadily after 200,000 simulation cycles approximately. The

performance of the information laying algorithms with the growing neural model is located

104

between that of the simple noncommunicating map creating agents and the omniscient agents

algorithm.

In figure 5.32 we can see how the performance of the communicating agents algorithms

drops substantially.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(a) Short-term memory model on Iris
database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(b) Growing Neural Gas model on Iris
database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(c) Short-term memory model on Wine
database

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

F-
m

ea
su

re

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(d) Growing Neural Gas model on Wine
database

Figure 5.32: F -Measure scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents change their dropping spot search
trajectories based on the contents of other agents’ short-term memories, and an algorithm in which
agents change their dropping spot search trajectory based on other agents’ environment maps. The
results were obtained using 30 agents using an adaptive laying policy. A score value of 1 means
perfect classification.

105

5.6.2 Rand Statistic

In figures 5.33c and 5.34c we can see how the behavior pattern observed before appears

again. The observed pattern suggests that the more information available to the agents the

worse. We will talk more on this issue in section 5.7.

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(a) Short-term memory model on Iris
database

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(b) Growing Neural Gas model on Iris
database

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(c) Short-term memory model on Wine
database

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(d) Growing Neural Gas model on Wine
database

Figure 5.33: Rand statistic scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents change their dropping spot search
trajectories based on the contents of other agents’ short-term memories, and an algorithm in which
agents change their dropping spot search trajectory based on other agents’ environment maps. The
results were obtained using 10 agents using an adaptive laying policy. A score value of 1 means
perfect classification.

106

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(a) Short-term memory model on Iris
database

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(b) Growing Neural Gas model on Iris
database

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(c) Short-term memory model on Wine
database

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

R
an

d
st

at
is

tic

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles

(d) Growing Neural Gas model on Wine
database

Figure 5.34: Rand statistic scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents change their dropping spot search
trajectories based on the contents of other agents’ short-term memories, and an algorithm in which
agents change their dropping spot search trajectory based on other agents’ environment maps. The
results were obtained using 30 agents using an adaptive laying policy. A score value of 1 means
perfect classification.

5.6.3 Intra-cluster Variance

The pattern just mentioned appears again with this validity measure. See figure 5.35c.

Besides this, we can see that the best performing algorithm in these eight graphs is the

omniscient agents algorithm.

107

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Iris database variance

(a) Short-term memory model on Iris
database

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Iris database variance

(b) Growing Neural Gas model on Iris
database

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Wine database variance

(c) Short-term memory model on Wine
database

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Wine database variance

(d) Growing Neural Gas model on Wine
database

Figure 5.35: Total intra-cluster variance scores over time for the Iris Plant and Wine databases of
Lumer and Faieta’s short-term memory agents algorithm, the same algorithm but with map creating
agents, an omniscient agents algorithm, an algorithm in which agents change their dropping spot
search trajectories based on the contents of other agents’ short-term memories, and an algorithm
in which agents change their dropping spot search trajectory based on other agents’ environment
maps. The results were obtained using 10 agents using an adaptive laying policy. As a reference,
the total intra-cluster variance of the correct clustering is shown.

108

 200

 300

 400

 500

 600

 700

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Iris database variance

(a) Short-term memory model on Iris
database

 200

 300

 400

 500

 600

 700

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Iris database variance

(b) Growing Neural Gas model on Iris
database

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Wine database variance

(c) Short-term memory model on Wine
database

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

In
tra

-c
lu

st
er

 v
ar

ia
nc

e

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Wine database variance

(d) Growing Neural Gas model on Wine
database

Figure 5.36: Total intra-cluster variance scores over time for the Iris Plant and Wine databases of
Lumer and Faieta’s short-term memory agents algorithm, the same algorithm but with map creating
agents, an omniscient agents algorithm, an algorithm in which agents change their dropping spot
search trajectories based on the contents of other agents’ short-term memories, and an algorithm
in which agents change their dropping spot search trajectory based on other agents’ environment
maps. The results were obtained using 30 agents using an adaptive laying policy. As a reference,
the total intra-cluster variance of the correct clustering is shown.

5.6.4 Dunn index

Figure 5.37 shows the Dunn index scores obtained by the tested algorithms with 10

agents. With the short-term memory model, the communicating agents algorithms are the

best. With the Wine database, they reach a maximum and start decreasing. With the

growing neural gas model and with the Iris database, they perform better than the omniscient

agents algorithm but worse than the noncommunicating agents algorithm.

109

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Iris database Dunn index

(a) Short-term memory model on Iris
database

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Iris database Dunn index

(b) Growing Neural Gas model on Iris
database

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Wine database Dunn index

(c) Short-term memory model on Wine
database

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Wine database Dunn index

(d) Growing Neural Gas model on Wine
database

Figure 5.37: Dunn index scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents change their dropping spot search
trajectories based on the contents of other agents’ short-term memories, and an algorithm in which
agents change their dropping spot search trajectory based on other agents’ environment maps. The
results were obtained using 10 agents using an adaptive laying policy. As a reference, the Dunn
index of the correct clustering is shown.

In figure 5.38 the Dunn index scores obtained by the tested algorithms with 30 agents

are shown. In all cases except one, the communicating agents algorithms start performing

quite well. However, in the end they converge to a value near zero.

110

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Iris database Dunn index

(a) Short-term memory model on Iris
database

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Iris database Dunn index

(b) Growing Neural Gas model on Iris
database

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Wine database Dunn index

(c) Short-term memory model on Wine
database

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

D
un

n
in

de
x

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Wine database Dunn index

(d) Growing Neural Gas model on Wine
database

Figure 5.38: Dunn index scores over time for the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents change their dropping spot search
trajectories based on the contents of other agents’ short-term memories, and an algorithm in which
agents change their dropping spot search trajectory based on other agents’ environment maps. The
results were obtained using 30 agents using an adaptive laying policy. As a reference, the Dunn
index of the correct clustering is shown.

5.6.5 Number of clusters

Figures 5.39 and 5.40 show the number of clusters discovered by the tested algorithms

over time with 10 and 30 agents respectively.

111

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Correct No. of clusters

(a) Short-term memory model on Iris
database

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Correct No. of clusters

(b) Growing Neural Gas model on Iris
database

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Correct No. of clusters

(c) Short-term memory model on Wine
database

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Correct No. of clusters

(d) Growing Neural Gas model on Wine
database

Figure 5.39: Number of found clusters over time in the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents change their dropping spot search
trajectories based on the contents of other agents’ short-term memories, and an algorithm in which
agents change their dropping spot search trajectory based on other agents’ environment maps. The
results were obtained using 10 agents using an adaptive laying policy. As a reference, the correct
number of clusters is shown.

112

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Correct No. of clusters

(a) Short-term memory model on Iris
database

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Correct No. of clusters

(b) Growing Neural Gas model on Iris
database

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Short-term memory agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Correct No. of clusters

(c) Short-term memory model on Wine
database

 0

 2

 4

 6

 8

 10

 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

N
um

be
r o

f c
lu

st
er

s

Simulation cycles

Map creating agents
Omniscient agents

1 cycle
10 cycles

100 cycles
Correct No. of clusters

(d) Growing Neural Gas model on Wine
database

Figure 5.40: Number of found clusters over time in the Iris Plant and Wine databases of Lumer and
Faieta’s short-term memory agents algorithm, the same algorithm but with map creating agents,
an omniscient agents algorithm, an algorithm in which agents change their dropping spot search
trajectories based on the contents of other agents’ short-term memories, and an algorithm in which
agents change their dropping spot search trajectory based on other agents’ environment maps. The
results were obtained using 30 agents using an adaptive laying policy. As a reference, the correct
number of clusters is shown.

5.7 Discussion of Results

In contrast with the previous chapter where only two series of experiments were run, in

this chapter they were four. This is because we tried with two different laying policies that

proved very similar in the end. In the first two series of experiments, a periodic laying policy

was tested. With it, every given number of simulation cycles, an agent drops a reference

to the inner structure that holds its environment representation, in our case a short-term

113

memory and a growing neural gas network. In the second series of experiments, an adaptive

laying policy was tried. By an adaptive laying policy, we mean a policy that changes all

the time according to a given circumstance an agent may be. In this case, it was decided

that laying an information packet on the environment would be sound only after an agent

had manipulated somehow (dropped or picked an object) the environment. Since data on

the environment begin to concentrate into clusters, the absolute laying frequency using the

adaptive approach decreases over time.

In the periodic laying policy, three different frequencies were tested: 10, 100, and 1000

cycles. In the adaptive laying policy we also tried three delays: 1, 10, and 100 cycles.

They are different because it does not make much sense to notify the other agents about

a modification of the environment long after it has been done. Of course, a quick delay

provokes a rather local notification radius, i.e., only an agent that was already nearby is

going to consume that information. Indeed, this fact makes the results more interesting.

Now, let us begin our analysis, and for that purpose we will divide it into two parts,

one for each laying policy.

5.7.1 Periodic Laying Policy

There are two identifiable behavior patterns. When the information is used for updating

or enriching the environment state representation, a frequent laying policy is better than an

infrequent one. See for example in figure 5.1d how the performance of the algorithm with

agents laying information every 10 cycles is better than the algorithm with agents laying

information every 100 cycles, but this in turn has a better performance than the algorithm

with agents laying information every 1000 cycles. This is confirmed in figures 5.8a and 5.8c.

The other pattern emerges when agents use the information to change their dropping spot

search trajectories. It is, interesting enough, opposite to the pattern just described. In

this case, the less frequent the deposition of information, the better. This is confirmed in

figures 5.11d, 5.12b, 5.13b, 5.13d, etc. It is evident.

The overall performance however, is not encouraging since these algorithms converge

to one or two clusters in the best case.

5.7.2 Adaptive Laying Policy

With this laying policy, things change a bit. In the case of agents updating their

environment state representation, the shorter the deposition delay, the worse. This result

which is confirmed in figures 5.21d, 5.23d, 5.24, etc. together with the result obtained with

the periodic laying policy, shows that the local component we mentioned earlier pays a key

role with the representation update model. Indeed, it is logical since the usefulness of the

information for the purpose of updating or enriching an environment state representation

depends on how much new information is received. If the information received reflects the

state of the region in which an agent is already, then it is not likely to be very useful.

114

For the same reason, the behavior pattern when agents use the information to decide

whether to change their dropping trajectory is the same. That is, the longer the delay, the

better. This is confirmed in figure 5.35c and 5.37c.

5.8 Conclusions

In this chapter, the effects of intentional indirect communication among agents in ant-

based clustering algorithms were explored. The main motivation of this exploration was to

increase the number of exchanges among agents without incrementing their number. Two

information laying policies were studied: a periodic laying policy and an adaptive laying

policy. With the periodic laying policy, an agent drops information packets every given

number of simulation cycles. With the adaptive laying policy, an agent drops information

after it has modified the environment and a given number of simulation cycles have passed.

Both policies were tested with two different information exploitation strategies: for

updating the agents’ internal environment representations and for changing their dropping

spot search trajectories. With the first strategy and the periodic laying policy, agents behave

better with high laying frequencies. This fact supports the hypothesis that the closer the

environment representation to the real environment state, the better. The first exploitation

strategy when used with the adaptive laying policy makes agents behave better with long

deposition delays than with short ones. This is because short delays provoke agents to drop

information near the region where they modified the environment and if other agent comes

across this information, it is unlikely that this information will be useful to it since the

information it contains, i.e., the recent change in the environment, is readily available to the

consumer agent. With the second exploitation strategy, the more information available to

the agents, the worse. That is, when using a high frequency laying or with a small delay

after manipulation, the performance of the algorithm degrades.

115

116

Chapter 6

Conclusions

This thesis investigated the effects of communication among agents on the clustering

quality and on the convergence speed of ant-based clustering algorithms. In total, four

different information exchange strategies were studied:

1. Direct information exchange for updating agents’ environment representations.

2. Direct information exchange for changing agents’ dropping spot search trajectories.

3. Intentional indirect information exchange for updating agents’ environment represen-

tations.

4. Intentional indirect information exchange for changing agents’ dropping spot search

trajectories.

To design the experiments, questions such as: What information will agents exchange?

When will they exchange it? How will they do it? What will they do with that information?

had to be answered. Although there are no general answers to them, we tried to explore

four issues when we proposed answers to them. First, what are the effects on the algorithms’

performance when agents exchange information from different levels of abstraction?. Second,

what is the impact on the algorithms’ performance when agents exchange information in dif-

ferent ways?. Third, what happens when agents use the information for different purposes?.

And fourth, what happens when agents choose to use immediately or after some delay the

available information?

Let us discuss how we coped with these issues and what were our results. The infor-

mation agents exchanged in the experiments belong to two different levels of abstraction:

• Memorized grid locations on which an agent had dropped a data object, and

• Pointers to promising dropping locations

The first choice was needed in order to compare the performance of the algorithms with

and without communicating agents. In fact, this model is just a simple extension of Lumer an

Faieta’s short-term memory agents model. The second choice tries to implement the idea of

117

map exchanging agents. Maps were represented as a set of vectors simultaneously distributed

in the grid and in the attribute space of data objects. Maps provide more information than

memorized dropping spots because they can adapt to changes in the spatial distribution of

objects.

With regard to the moment in which agents should exchange information, we decided

to couple this issue with the way agents were going to exchange information. That is, agents

decided to exchange information depending on the exchange method used. When agents

exchanged information directly, they did it whenever they met on the grid. When they

exchanged information indirectly, they did it whenever an agent came across an information

packet on the grid.

One of the most critical part in the experiments design was to decide what agents should

do with the exchanged information. Our hypothesis was that agents with information about

the spatial distribution of data on the grid, would be able to choose the best location on

which to drop an object (if they were loaded), or the best regions of the environment to

explore (if they were unloaded). With informed decisions, agents could create better clusters

in a faster way. We therefore decide to explore the idea by (i) letting agents represent

their environment and after every exchange, update or enrich their representations, and (ii)

changing their dropping spot search trajectories, i.e., they were allowed to “change their

minds” regarding their supposed best dropping spot on the grid.

The following sections present in detail the conclusions drawn from the experimental

results with each of the tested strategies.

6.1 Direct information exchange

In the experiments run for this part of the thesis, direct information exchange occurs

only when two or more agents meet a location on the grid. Hence, the probability of an

encounter between two agents moving randomly raises as the number of agents is increased

(assuming a constant size of the grid). In robotic experiments [16] this fact is confirmed.

In these experiments, we tried to take advantage of this fact and use it to study the effect

of increasing the information exchange frequency among agents. This is the reason of using

two different sizes of agent populations in all the experiments.

The actual effect of information exchange depends not only on the frequency of en-

counters but also on their effectiveness, i.e., information exchange is beneficial as long as the

exchanged information is useful. In the ant-based clustering context, information usefulness

depends very much on how well an agent’s environment representation approximates the

current environment state and/or how it uses the available information. The environment

is not really well approximated during the first stages of the clustering process because of

the high environment dynamism. When this phase finishes, once that some initial clusters

exist, information exchange is more effective as the environment is less dynamic.

118

6.1.1 When used for updating environment representations

The results obtained in the first series of experiments, those with agents updating their

environment representations, are somewhat discouraging. The worst performing algorithm

is the one with map updating agents, and the second worst is the memory updating agents

algorithm. In the first case, further experimentation must be done to know what went wrong

in the experiments. It is very likely that the parameter set used in the experiments was not

the correct one. We leave this issue as future work. In the case of the memory updating

agents algorithm, the relatively poor performance is not as discouraging as is the obtained

with map creating agents. The negative offset observed in the response plots with respect

to the omniscient agents algorithm response plots, is an indication of the correct, although

not perfect, approximation to the real state of the environment.

6.1.2 When used for changing dropping spot search trajectories

The results obtained with dropping spot search trajectory changing agents are quite

the opposite from the previous ones. In this case, the clustering quality is improved by the

communicating agents algorithms. They produce even better clusters than the version with

omniscient agents. This is true only when using 10 agents. With 30 agents, the relative

performance of these algorithms is deteriorated. This suggests the existence of some critical

number of agents that should behave this way with a given database. Determining the

optimum number of agents for a given clustering task remains a research issue.

6.2 Indirect information exchange

In the experiments run for exploring the effects of intentional indirect information ex-

change among agents in ant-based clustering algorithms, agents lay packets which contain

information about data distribution on the environment for others to pick and use. This

strategy is inspired by the anal trophallaxis phenomenon among social insects but it also has

other reasons. Direct communication among agents in ant-based clustering has two disad-

vantages: (i) even when the number of exchanges increases, we cannot expect many of them

to happen since the number of agents must be kept small (for performance reasons), and (ii)

many exchanges do not have any effect since agents walk in a randomly fashion, i.e., two

agents coincide many times, over and over again, before they follow different trajectories. So

the idea is that if we let agents lay information on their environment, it could be possible

to increase dramatically the number of exchanges without even increasing the number of

agents.

Two information laying policies were studied: a periodic laying policy and an adaptive

laying policy. With the periodic laying policy, an agent drops information packets every given

number of simulation cycles. With the adaptive laying policy, an agent drops information

after it has modified the environment and a given number of simulation cycles have passed.

119

6.2.1 When used for updating environment representations

The results show that the more information available to the agents, the better the

performance of the algorithms with environment representations updates. With a periodic

laying frequency, the higher the frequency, the better. And with the adaptive laying policy,

the shorter the delay, the better. This results confirm the intuition which says that to

maintain an up-to-date environment representation, an agent has to acquire fresh information

all the time.

6.2.2 When used for changing dropping spot search trajectories

When agents use the information only to decide whether to change their dropping spot

search trajectory, the more information available to them, the worse. This result is also

sound if we think of agents as “changing their minds” based on the information provided

by other agents. An agent may receive contradicting information or may be misleaded to

a nonpromising region in the environment. Therefore, with this information exploitation

strategy, high laying frequencies and short delays have negative impact on the algorithms

performance.

6.3 Discussion

In this thesis, the effects on clustering quality and convergence speed of direct and

indirect communication among agents in ant-based clustering algorithms were studied. The

results show that nonstigmergic communication among agents in these algorithms has effects

on the final clustering obtained by the algorithm. The final effects depend on the type of

information exchanged, its use, its availability and the number of participating agents.

The hypothesis that guided our work was:

In ant-based clustering algorithms, it is possible to reduce convergence time and improve

clustering quality by letting agents exchange information about the spatial distribution of

data and their type.

The underlying assumption that is the core of this hypothesis is: if an agent is loaded

with a data object, the best place on the grid it can drop that data object is next to, or at

least near, the location of its nearest neighbor in attribute space.

An loaded omniscient agent then, would move directly to the location on the grid of

the nearest neighbor of the data object it is carrying. This behavior was programmed but

it did not obtained the best clustering quality scores. Why? One possible explanation is

that agents fail to drop the data objects they are carrying next to their nearest neighbors.

This is a fact in our experiments since agents do not “jump”. They change their walking

direction only, and therefore, they can drop its load somewhere on the grid between its

load original location and their supposed destination. Future work should confirm or reject

this hypothesis. Another possible explanation is that our omniscient agents are only an

120

approximation to real omniscient agents, that is, in our experiments these agents know the

exact location of all the objects on the grid but they do not know the location of the objects

other agents are carrying. So, their choice of the nearest neighbor is not necessarily the true

nearest neighbor. It can be solved if the algorithm runs with a single agent, but in this case,

communication among agents is no longer meaningful.

To select the best location on which to drop a data object, when agents do not have full

observability of the environment, we tested two strategies: (i) to enrich/update an internal

representation, and (ii) to change the dropping spot search trajectory. In the former, high

availability of information has a positive impact. In the latter, it was shown that high

availability of information has negative consequences. These conclusions are drawn from all

our experiments, regardless the actual representation scheme used or the way information

was exchanged. Future work involves testing these conclusions with experiments with user-

controlled databases. This last thing in order to eliminate the bias introduced by the used

test databases.

Two facts motivated this work. One one hand the lack of knowledge about the effects

of direct and intentional indirect communication among agents in ant-based clustering algo-

rithms. On the other hand, the slow convergence speed of the classical stigmergic version

of the algorithm. This thesis studied both. The hypothesis was that in ant-based clustering

algorithms it is possible to reduce convergence time and improve clustering quality by let-

ting agents exchange information about the spatial distribution of data and their type. The

hypothesis is true when agents do not update their environment state representation and

the number of participating agents is small. The convergence speed is improved in almost

all cases but the quality of the final clustering is not satisfactory.

This thesis tries to fill a space in literature regarding agent communication issues in

swarm intelligent systems. Communication among agents in swarm intelligent systems and

more generally in multi-agent systems, is crucial in order to coordinate their activities so

that a particular goal at the collective level is achieved. From an individual perspective,

the problem consists in establishing communication policies that determine what, when, and

how to communicate with others. In general, communication policies will depend on the

nature of the problem being solved. This means that the solvability of problems by swarm

intelligent systems depends, among other things, on the agents communication policies, and

setting an incorrect set of policies into the agents may result in finding poor solutions or

even in the unsolvability of problems. This is confirmed with our results.

6.4 Contributions

Two previously unexplored problems in the area of ant-based clustering algorithms

were studied in this thesis. Namely, the use of direct and intentional indirect communication

among agents. This thesis reports experimental evidence that show what behavior patterns

agents exhibit when using different information communication and exploitation strategies.

121

Table 6.1 summarizes our contributions to the state of the art in ant-based clustering algo-

rithms.

Table 6.1: Contributions to the state of the art in ant-based clustering algorithms

Aspect Contribution

Direct communication among

agents in ant-based clustering

algorithms

No previous works are known that

study the area of direct communication

among agents in ant-based clustering

algorithms. This work is a first ap-

proach to it and our results show that

it is promising when certain condition

are met.

Intentional indirect communica-

tion among agents in ant-based

clustering algorithms

Ant-based clustering works because

of the indirect communication among

agents through local modifications of

the environment. However, intentional

indirect communication among agents

in ant-based clustering algorithms had

not been explored before this thesis.

122

6.4.1 Publications derived from the work on this thesis

Table 6.2: Publications derived from this work

Publication

Montes de Oca M. A., Garrido L., and Aguirre J.L. A first approach

to study the effects of direct information exchange between agents

in ant-based clustering. International Journal on Lateral Comput-

ing. International Federation on Lateral Computing. Volume 1.

Number 1. May 2005.

Montes de Oca M. A., Garrido L., and Aguirre J.L. Efectos de

la comunicación directa entre agentes en los algoritmos de agru-

pación de clases basados en el comportamiento de insectos sociales.

Inteligencia Artificial. Revista de la Asociación Española de In-

teligencia Artificial (AEPIA). ISSN 1137-3601. Volume 9. Number

25. 1st quarter 2005 (To appear).

Montes de Oca M. A., Garrido L., and Aguirre J.L. An hybridiza-

tion of an ant-based clustering algorithm with growing neural gas

networks for classification tasks In 20th Annual ACM Symposium

on Applied Computing. Santa Fe, N.M. USA. March 2005. pp 9-13.

Montes de Oca M. A., Garrido L., and Aguirre J.L. A first ap-

proach to study the effects of direct information exchange between

agents in ant-based clustering. Abstract Compilation of the XXXV

Congreso de Investigación y Desarrollo Tecnológico. Tecnológico

de Monterrey. Monterrey, N. L. México. January 2005. pp. 280.

Montes de Oca M. A., Garrido L., and Aguirre J.L. A first approach

to study the effects of direct information exchange between agents

in ant-based clustering. In Proceedings of the First World Congress

on Lateral Computing. Bangalore, India. December 2004.

Montes de Oca M. A., Garrido L., and Aguirre J.L. On the effects

of direct communication between agents in ant-based clustering al-

gorithms. In Proc. of the Fifth Iberoamerican Workshop on Multi-

Agent Systems. Iberagents 2004. Puebla, México. November 2004.

123

6.5 Future Work

Quite a lot of work remains to be done in the area of communication among agents

in ant-based clustering algorithms. Let us first list those that are directly related to the

work done in this thesis. First, we have already mentioned that work is needed to determine

the performance of an ant-based clustering algorithm with real omniscient agents. A single

agent is capable to perform clustering and it would be really omniscient in the sense that

knows exactly where the objects are located on the grid all the time. However, omniscience

in the sense of knowing what to do in order to maximize its performance measure would

still be a research issue since it is not evident, even to us humans, what to do in a totally

observable environment in which one has to cluster data objects. Second, it is necessary

to explore the behavior of the algorithms with different parameter settings. Unfortunately,

there is no theory that could explain how ant-based clustering really works, and therefore, we

are forced to experiment with different parameter settings. Third, it is of great importance

to explore the effects of a mixed communication strategy, i.e., using at the same time a

direct and an intentional indirect communication strategy or using agents that change their

communication policies during the clustering process.

In chapter 3, we described an improved version of the Lumer and Faieta’s ant-based

clustering algorithm authored by Handl et. al. Future work should focus on this algorithm

to study the effects of different communication policies among agents, since its performance

is far superior than that of Lumer and Faieta’s algorithm.

With regard to swarm intelligent systems, and in spite of their success, we need to

consider the question of whether agents should/could communicate in other ways to achieve

organization or better solutions to problems. There is no general answer nor general commu-

nication policy that will apply equally well to all problems. This is why we need to formalize

the effects of letting agents use different communication policies. With this knowledge and

considering the characteristics of a particular problem, we could either improve the perfor-

mance or permit the application of a swarm intelligent system to solve it. Moreover, a swarm

intelligent system may find adequate to change communication policies during problem solv-

ing. This imposes the need of formally studying problems and their behavior when solved

by swarm intelligent systems. From this, we can finally conclude that Swarm Intelligence is

an exciting research area and much work is yet to be done. The pay off could be really high

if we can move from an experimental research strategy to a theoretical one.

124

Bibliography

[1] Martinoli A. and F. Mondada. Collective and cooperative group behaviours: Biologically

inspired experiments in robotics. In Khatib. O. and Salisbury. J.K., editors, Proceedings

of the Fourth International Symposium on Experimental Robotics ISER-95, pages 3–10.

Springer Verlag, 1995.

[2] Periklis Andritsos. Data clustering techniques, 2002.

[3] G. Beni and J. Wang. Swarm intelligence. In Proceedings of the Seventh Annual Meeting

of the Robotics Society of Japan, pages 425–428, 1989.

[4] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm Intelligence. From Natural

to Artificial Systems. Oxford University Press, 1999.

[5] Blake C.L. and Merz C.J. Uci repository of machine learning databases.

[http://www.ics.uci.edu/∼mlearn/mlrepository.html]. University of California, Irvine,

Dept. of Information and Computer Sciences, 1998.

[6] J.-L. Deneubourg, S. Goss, N. Franks, Sendova-Franks A., Detrain C., and L. Chretien.

The dynamics of collective sorting: Robot-like ants and ant-like robots. In Proceedings of

the First International Conference on Simulation of Adaptive Behavior: From Animals

to Animats, pages 356–365. MIT Press, 1991.

[7] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, Cambridge, MA, 2004.

[8] Richard J. Elzinga. Fundamentals of entomology. Prentice Hall, 2000.

[9] Brian S. Everitt, Sabine Landau, and Morven Leese. Cluster Analysis. Arnold, a member

of the Hodder Headline Group, fourth edition, 2001.

[10] Bernd Fritzke. A growing neural gas network learns topologies. In Advances in Neural

Information Processing Systems 7. MIT Press, 1995.

[11] Pierre-Paul Grassé. La reconstruction du nid et les coordinations inter-individuelles

chez bellicositermes natalensis et cubitermes sp. la theorie de la stigmergie: Essai

d’interpretation des termites constructeurs. Insectes Sociaux, 6(1):41–83, 1959.

125

[12] Julia Handl, Joshua Knowles, and Marco Dorigo. On the performance of ant-based

clustering. Design and application of hybrid intelligent systems. Frontiers in Artificial

Intelligence and Applications 104. IOS Press, Amsterdam, The Netherlands, 2003.

[13] Julia Handl, Joshua Knowles, and Marco Dorigo. Strategies for the increased robustness

of ant-based clustering. In Self-Organising Applications: Issues, challenges and trends.

LNCS 2977, pages 90–104. Springer, 2003.

[14] Julia Handl, Joshua Knowles, and Marco Dorigo. Ant-based clustering and topographic

mapping. Artificial Life, 11(2), 2005. In press.

[15] Julia Handl and Bernd Meyer. Improved ant-based clustering and sorting in a document

retrieval interface. In Proceedings of the Seventh International Conference on Parallel

Problem Solving from Nature (PPSN VII). LNCS 2439, pages 913–923. Springer, 2002.

[16] Owen Holland and Chris Melhuish. Stigmergy, self-organization, and sorting in collective

robotics. Artificial Life, 5:173–202, 1999.

[17] Frank Hoppner, Frank Klawonn, Rudolf Kruse, and Thomas Runkler. Fuzzy Cluster

Analysis. Methods for classification, data analysis and image recognition. Wiley & Sons,

Ltd., 1999.

[18] A.K. Jain, M.N. Murty, and P.J. Flynn. Data clustering: A review. ACM Computing

Surveys (CSUR), 31(3):264–323, 1999.

[19] T. Kohonen, T.S. Huang, and M.R. Schroeder. Self-organizing maps. Springer Verlag,

third edition, 2000.

[20] C.R. Kube and H. Zhang. Collective robotic intelligence. In Proceedings of the Second

International Conference on Simulation of Adaptive Behavior, pages 460–468, 1992.

[21] Kristina Lerman and Aram Galstyan. A general methodology for mathematical anal-

ysis of multi-agent systems. Technical report, Information Sciences Institute, Univ. of

Southern California, 2001.

[22] Erick D. Lumer and Baldo Faieta. Diversity and adaptation in populations of clustering

ants. In Proceedings of the Third International Conference on Simulation of Adaptive

Behavior: From Animals to Animats 3, pages 501–508. MIT Press, 1994.

[23] P.S. Nagpaul. Non-parametric measures of bivariate relationships.

http://www.unesco.org/webworld/idams/advguide/chapt4 2.htm, 2004.

[24] M.J. Pearce. Termites. Biology and Pest Management. CAB International Publishing,

1997.

126

[25] Edward O. Wilson. The Insect Societies. The Belkap Press of Harvard University Press,

1971.

127

128

Vita

Marco Antonio Montes de Oca Roldán was born in Mexico City, Mexico on April

6th, 1979. He was awarded a B.S. in Computer Engineering from the School of Computer

Engineering of the National Polytechnic Institute in 2001. By that time, he was already

working for the National Center for the Arts, and continued working there for two more

years after his graduation. He also worked for the Public Ministry of Education from 2001

to 2003.

In August 2003, he enrolled in the graduate program in intelligent systems at the

Monterrey Institute of Technology. He is expecting to start his PhD at the Université Libre

de Bruxelles in September 2005.

E-mail Address: marco.montes.de.oca@gmail.com

This thesis was typesetted with LATEX1 by Marco Antonio Montes de Oca Roldán.

1The macros package, ITESMtesis.sty, that was used to format this thesis was written by Dr. Horacio
Mart́ınez Alfaro <hma@itesm.mx>, Associate Professor of the Center for Intelligent Systems. Monterrey
Institute of Technology, Monterrey Campus.

129

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	List of Algorithms
	Chapter Introduction
	Problem definition
	Research Objectives
	Main objective
	Particular objectives

	Hypothesis
	Research questions

	Thesis organization

	Chapter Data Clustering
	Clustering Problem
	Definition

	Components of a Clustering Task
	Data Representation
	Classification Based on Domain Size
	Classification Based on the Measurement Scale

	Proximity Measures
	Standardization
	Proximity Measures for Quantitative Data
	Proximity Measures for Qualitative Data
	Proximity Measures for Ordinal-Scaled Data
	Proximity Measures for Mixtures of Qualitative and Quantitative Data

	Clustering Techniques
	Hierarchical Methods
	Divisive Methods
	Optimization Methods

	Chapter Ant-Based Clustering Algorithms
	Cemetery Organization, Brood Sorting and Nest Building
	Spatial Aggregation and Sorting
	Spatial Aggregation
	Spatial Sorting

	Exploratory Data Analysis
	Engineered Ant-Based Clustering Algorithms
	Ant-Based Clustering Quality Assessment

	Chapter Direct communication among agents in ant-based clustering algorithms
	Direct communication strategies
	Experimental Setup
	Test Data
	Agent Models
	Experiments Design

	Results of Experiments on Information Exchange for Environment Representation Updates
	F-Measure
	Rand Statistic
	Intra-cluster Variance
	Dunn index
	Number of clusters

	Results of Experiments on Information Exchange for Behavior Changes
	F-Measure
	Rand Statistic
	Intra-cluster Variance
	Dunn index
	Number of clusters

	Discussion of Results
	Conclusions

	Chapter Intentional indirect communication among agents in ant-based clustering algorithms
	Indirect communication strategies
	Experimental Setup
	Experiments Design

	Results of Experiments on Information Exchange for Environment Representation Updates using a Periodic Laying Policy
	F-Measure
	Rand Statistic
	Intra-cluster Variance
	Dunn index
	Number of clusters

	Results of Experiments on Information Exchange for Behavior Changes using a Periodic Laying Policy
	F-Measure
	Rand Statistic
	Intra-cluster Variance
	Dunn index
	Number of clusters

	Results of Experiments on Information Exchange for Environment Representation Updates using an Adaptive Laying Policy
	F-Measure
	Rand Statistic
	Intra-cluster Variance
	Dunn index
	Number of clusters

	Results of Experiments on Information Exchange for Behavior Changes using an Adaptive Laying Policy
	F-Measure
	Rand Statistic
	Intra-cluster Variance
	Dunn index
	Number of clusters

	Discussion of Results
	Periodic Laying Policy
	Adaptive Laying Policy

	Conclusions

	Chapter Conclusions
	Direct information exchange
	When used for updating environment representations
	When used for changing dropping spot search trajectories

	Indirect information exchange
	When used for updating environment representations
	When used for changing dropping spot search trajectories

	Discussion
	Contributions
	Publications derived from the work on this thesis

	Future Work

	Bibliography
	Vita

