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Abstract—Reverse engineering is the problem of inferring the structure of a network of interactions between biological variables from

a set of observations. In this paper, we propose an optimization algorithm, called MORE, for the reverse engineering of biological

networks from time series data. The model inferred by MORE is a sparse system of nonlinear differential equations, complex enough

to realistically describe the dynamics of a biological system. MORE tackles separately the discrete component of the problem, the

determination of the biological network topology, and the continuous component of the problem, the strength of the interactions. This

approach allows us both to enforce system sparsity, by globally constraining the number of edges, and to integrate a priori information

about the structure of the underlying interaction network. Experimental results on simulated and real-world networks show that the

mixed discrete/continuous optimization approach of MORE significantly outperforms standard continuous optimization and that MORE

is competitive with the state of the art in terms of accuracy of the inferred networks.

Index Terms—Reverse engineering, mixed optimization, biological networks, sparse systems of differential equations.
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1 INTRODUCTION

GENES of the DNA encode the information necessary for
the synthesis of proteins and, when a gene is activated

or expressed, this information is carried by messenger RNA
(mRNA) to the machinery responsible for protein creation.
Some proteins, called transcription factors, have in turn the
role of activating or inhibiting the expression of genes, thus
closing the loop of a feedback control mechanism of the
DNA called gene regulation.

Proteins may interact with each other to carry out
different biological functions. For example, proteins may
interact to form a protein complex; a protein may carry
another protein (for example, from cytoplasm to nucleus);
a protein may interact with another protein to modify it
(for example, a protein kinase adds a phosphate to a target
protein).

Modeling biological systems as networks of interacting
components has become, in recent years, a leading para-
digm in molecular biology [1]. Biological networks are

modeled as graphs in which nodes represent the biological
variables under analysis, such as gene expression or protein
concentration, and edges represent interactions between the
variables. Three main types of biological networks can be
defined: metabolic, protein-protein interaction, and tran-
scriptional regulatory networks.

In general, the aim of an analysis based on the biological
network formalism is to infer the unknown topology of the
network from protein and, more frequently, mRNA expres-
sion data; such a process is known as reverse engineering [2].
An example of an international effort in this direction is the
DREAM initiative, i.e., Dialogue for Reverse Engineering
Assessments and Methods [3], [4], [5].

A meaningful approach for the identification of new
relations between a set of observed biological variables can
be to search for the best fit of a system of nonlinear
differential equations to the temporal profiles of the variables
[6]. The problem can be cast to the one of finding the
parameters of the system that minimize the fitting error. The
search space corresponds to the continuous space of system
parameters and the function to be minimized is a measure of
the error between real and predicted temporal profiles.

The purpose of the work described in this paper is to
design a reverse engineering algorithm to solve the
optimization problem of fitting systems of nonlinear
differential equations to biological time series.

The model adopted for the fit should be complex enough
to realistically describe the dynamics of a biological system,
which are known for being strongly differential and
nonlinear when the system operates far from the equili-
brium [7], [8], [9].
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We decided to provide the algorithm with the following
features:

. Limit the effect of noise by numerically integrating
the whole system of equations describing the model,
rather than amplifying the noise by estimating the
derivatives from temporal data [8],

. Enforce sparsity, a common feature of biological
networks [10], [11], [12], on a global scale by
imposing constraints on the total number of edges
in the network rather than on the in- or out-degree of
the single nodes,

. Allow the easy addition of a priori information on
the network structure, in terms of knowledge on
potential connections between the nodes; such
information is often available when reverse engi-
neering experiments are designed and analyzed and
can greatly reduce the size of the search space [13].

To the best of our knowledge, a reverse engineering
algorithm with all the aforementioned features has never
been proposed in the literature. Among the algorithms
based on dynamical models, some works rely on linear or
additive systems [14], [15], [16], [17]: the power of these
models is, however, limited and the authors usually make
the assumption that the biological system operates near a
steady state [15].

In the vast majority of the works that exploit a
sufficiently complex model for system dynamics [8], [9],
[18], [19], [20], [21], derivatives are estimated from temporal
data, either with finite differences, data interpolation, or by
approximating differential equations with algebraic equa-
tions. Without a large amount of equally spaced time
points, however, such an approach is sensitive to noise in
the data [8].

Sparsity of the system is usually enforced in the
literature by either adding penalty terms to the cost
function [18], [21], [22], [23] or constraining the maximum
number of incoming edges per node [24], [25]. The former
approach poses the problem of weighting the penalty terms
with respect to the cost function by adding one or more
parameters, which have to be tuned a posteriori and
dramatically affect the outcome of the algorithm. The latter
approach tends to be unsuitable for biological networks,
which generally exhibit both highly connected and loosely
connected nodes [26], making it difficult to set a global
threshold on node connectivity.

A major exception is the work from Marbach et al. [27],
[28], in which a system of log-sigmoid differential equations
is fit to time-course data and the system is numerically
integrated to compute temporal profiles. The authors define
a strategy to implicitly encode the system in an artificial
genome. A genetic algorithm lets the genome evolve until a
state is reached in which the square error between real and
estimated temporal profiles is sufficiently small. The
implicit encoding of the system, however, provides limited
control on the addition of a priori knowledge on potential
edges in the network.

With the aim of acquiring a better understanding of the
optimization problem and to inform the design of our
algorithm, we first carried out a fitness-distance correlation
(FDC) analysis [29], [30], i.e., a study of the features of the

search landscape around the optimum. This is particularly
interesting in the context of reverse engineering, since a
search landscape analysis gives an idea of the problem
difficulty, of the presence of local optima and on how to
improve the inference process. As far as we are aware, such
an analysis has never been applied to the problem under
study. The analysis is described in detail in one of our
previous works [31]. The main results, together with some
additional, new results, are reported in this paper.

The results of the fitness landscape analysis provide
evidence in favor of a decomposition of the problem into
two interconnected subproblems: a discrete search of the
optimal network structure in the space of connectivity
matrices and a continuous search of the optimal network
parameters in IRE , where E is the number of edges in the
network.

Thus, in this paper, we propose Mixed Optimization for
Reverse Engineering (MORE), a mixed discrete/continuous
optimization algorithm composed of two interacting layers:
at a higher level, an Iterated Best Improvement component
searches in the discrete space of network structures; each
structure is then scored, at a lower level, by a derivative-free
continuous optimization algorithm, which searches for the
optimal values of the continuous parameters of the system
induced by the network structure.

Two candidate continuous optimization algorithms are
considered from the state of the art: the NEW Uncon-
strained Optimization Algorithm (NEWUOA [32]) and
Covariance Matrix Adaptation-Evolution Strategy (CMA-
ES [33]). As shown in this paper, the latter exhibits a better
performance in terms of reliability of the results and is thus
chosen as the continuous search component of MORE.

A set of feedback strategies between the two compo-
nents of the algorithm are designed, in order to enhance
performance by caching and reusing information and by
exploiting locality and problem-specific features during
the search.

The presence of a separate discrete component for
searching in the space of network structures allows both
enforcing network sparsity, by globally constraining the
total number of edges in the network, and exploiting a
priori information on possible network edges, by skewing
the probabilities with which these edges are sampled in the
local search procedure.

The stochastic nature of the discrete optimization
component is exploited to gather an ensemble of solutions,
each obtained by a random restart of the discrete search
component. The ensemble is exploited to estimate con-
fidence values for each edge of the inferred network.

Both the fitness landscape analysis and an extensive
assessment of the performance of MORE are carried out on
a rich set of simulated data, exploiting network topologies
generated with the SimBioNeT simulator [34], [35]. The
analyses are performed both in the absence of simulated
noise, to assess the full power of the algorithm in an ideal
case, and in the presence of low, medium, and high levels of
noise. MORE is then tested on a real scenario with a data set
of protein activity, collected for the Predictive Signaling
Network Modeling challenge of the international DREAM4
competition [3], [4], [5]. The latter data set allows us to test
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the benefits of globally handling sparsity and a priori
information in the search process.

The performance assessment on simulated data shows
the effectiveness of the mixed optimization approach as
opposed to standard continuous optimization, as soon as
even a low level of noise is present in the data. Furthermore,
the designed feedback strategies between the two levels of
optimization are proven effective in reducing computation
time. From a qualitative comparison of the results, the
algorithm is shown to exhibit a performance equal or better
than the state-of-the-art on problems of the same complex-
ity. Tested on the DREAM4 data, both with and without the
addition of a priori information on the network structure,
MORE returns a meaningful and sparse biological network.

The remainder of the paper is organized as follows: a
description of the model chosen to describe variables
dynamics is given in Section 2. The simulated data set is
described in Section 3. Section 4 reports the main results of
the analysis of the fitness landscape for the given problem
and the comparison between NEWUOA and CMA-ES.
Section 5 presents the MORE algorithm. Section 6 describes
the adopted performance measures and presents the
experimental results on simulated data. Section 7 describes
the DREAM4 data set and presents the experimental results
on the real scenario. Finally, Section 8 draws conclusions
and proposes some possible future directions.

2 MODEL

The model we choose for describing the temporal dynamics
of a biological network is a system of nonlinear sigmoidal
differential equations, formally identical to what is known
as Dynamic Recurrent Neural Networks (DRNN [36], [37])
in the machine learning literature. Equations of the system
have the following form:

dxi
dt
¼ k1i

1þ e�
�P

j¼1...n
aijxjþ

P
l¼1...m

bilul

� � k2ixi; i ¼ 1 . . .n;

ð1Þ

where n is the number of variables in the system, xi is the
activity level of variable i, aij represents the relative effect of
xj on xi (1 � i; j � n), ul is the l-th external input to the
system (1 � l � m), which can be time varying, constant or
null, bil represents the relative effect of ul on xi, k1i is the
maximal level of activity, and k2i is the degradation rate.

The system can be expressed in matrix form as

_X ¼ K1 � � AXþBUð Þ �K2 �X; ð2Þ

where matrices An�n and Bn�m contain the coefficients aij
and bil, X and U are the column vectors of system variables
and external inputs, K1 and K2 are the column vectors of
maximal activity levels and degradations rates, � is the
nonlinear sigmoid function and � represents the element-
wise product between two column vectors.

An identical model is used in [38] for the analysis of
microarray data from an experiment on Saccharomyces
Cerevisiae cell cycle, and is adopted in [9] and [19] for a
reverse engineering algorithm based on Particle Swarm
Optimization [39].

3 SIMULATED DATA SET

A reliable assessment of the average performance of an
algorithm in reconstructing a biological network needs to be
carried out on a large set of known networks. This objective
is still difficult to accomplish with real data: very few
biological networks are known with sufficient precision and
it is often difficult to exclude the effects of unobserved
variables [2].

Simulated networks are generated with the simulator
recently introduced in [34]: the topology is generated
according to the current knowledge of biological network
organization, including scale-free distribution of the con-
nectivity1 and a clustering coefficient independent of the
number of nodes in the network [10]. Twenty networks of 5,
8, and 10 nodes were generated.

Both for simplicity and for coherence with the experi-
ments carried out in the majority of the papers sharing a
similar model [9], [19], [27], [28], the presence of external
inputs is excluded in the simulated data set, thus fixing the
matrix B from (2) to zero, and the parameters k1i and k2i are
fixed to 1 for each i. The dynamics of the system are thus
fully described by matrix A.

Simulated networks are sparse: since each aij in (1) is
representative of an edge from j to i in the network, the
majority of aij are thus equal to zero; the remaining nonzero
elements are sampled uniformly at random from the interval
½�amax; amax�, where amax is set so that system dynamics
could reach the steady state within the simulated time.

For each network, time series are generated initializing
the level of activation of each variable uniformly at random
and simulating the evolution of the system, by numerically
integrating the system of equations (1) with the Runge-
Kutta-Fehlberg method with adaptive step size control
[40]. Temporal profiles are then sampled at logarithmically
spaced time points, so that the majority of samples are
taken right after the initialization. This practice is common
in real experiments, because meaningful information
usually concentrates right after the stimulation of a
dynamical system [41].

When needed in the analyses, we simulate measurement
error by adding Gaussian noise to temporal dynamics, with
zero mean and constant Coefficient of Variation (CV): such
a model for the noise has been considered an approximation
of the error observed in both gene expression microarray
data [42] and protein mass spectrometry data [43] and has
already been used to generate simulated data for testing
several reverse engineering algorithms [18], [20], [44].

Simulated time series and corresponding system ma-
trices are available as Supplementary Material, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TCBB.2012.56.

4 FITNESS LANDSCAPE AND PROBLEM DIFFICULTY

The term fitness is used in the Evolutionary Computation
literature to refer to the quality of a solution with respect to
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the scale-free distribution cannot be properly defined. However, generated
networks exhibit some of the main properties of scale-free networks: they
are sparse, with few highly connected nodes and the others being loosely
connected.



an objective function (fitness function) that has to be
maximized (or minimized). A fitness landscape is, thus,
the set of values on which the set of candidate solutions to an
optimization problems are mapped. The features of this
landscape can give us information about the difficulty of the
optimization problem represented by an objective function.

In our case, the objective function is the following:

RSE ¼ 1

Tn

XT

t¼1

Xn

i¼1

x̂iðtÞ � xiðtÞ½ �2

x2
i ðtÞ

:

This function computes the Relative Squared Error (RSE)
between the observed values of the variables at time t, xiðtÞ,
and the corresponding value predicted by the model, x̂iðtÞ.
Such an objective function is consistent with the assumption
of a constant coefficient of variation of the noise and is
commonly adopted in reverse engineering algorithms [18],
[20], [44], [45].

4.1 Fitness-Distance Correlation Analysis

A measure that gives some information about the difficulty
of an optimization problem is called fitness-distance
correlation (FDC) [29], [30]. To compute a problem’s FDC,
a set of sample solutions are randomly generated. For each
sample, its fitness value and its distance to a reference point,
which can be the known optimum or the best known
solution to the problem, are computed. Pearson correlation
between fitness and distance is then computed for the whole
sample set. If a problem’s FDC is sufficiently close to one, an
algorithm that searches around the best-so-far-solution is
expected to perform well. If the problem’s FDC is close to
zero or negative the problem becomes much harder, because
the best-so-far solution does not give much information
about which regions of the search space are promising.

We performed an FDC analysis of the search space that
consists of the set of all possible continuous values for each
element aij of the weight-matrix A from (1). The fitness of a
solution is inversely proportional to the RSE it generates.
The euclidean distance of a solution to the optimal matrix is
used as distance measure in the FDC computation.

For the FDC analysis, we exploited 20 simulated net-
works of 10 nodes, from each of which 10 time series of
50 time points were generated as described in Section 3. To
study the complexity of the problem in the ideal condition
of absence of both model and measurement error, no
simulated noise was added at this stage of the analysis.

The search space around the optimal weight-matrix A
was sampled using three schemes:

. Uninformed sampling: each element of the optimal
matrix, both zeros and nonzeros, was perturbed
with the addition of a log-uniformly distributed
random variable. The resulting samples are equally
distributed around the point representing the opti-
mal solution in the solution space.

. Informed sampling: nonzero elements of the optimal
matrix were perturbed with the addition of a log-
uniformly distributed random variable. The result-
ing samples are distributed along the axes corre-
sponding to zero elements of the matrix and the
structure of the system is unchanged.

. Structural sampling: the optimal connectivity matrix
of the system was perturbed at increasing levels of

Hamming distance,2 by replacing an increasing
number of elements in the optimal weight matrix.
Nonzero elements were turned to zero and zero
elements were replaced with a random nonzero value.

Example scatterplots of fitness versus distance from the

optimum for the three sampling schemes are represented in

Fig. 1.
The three sampling schemes are meant to reveal different

aspects of the search landscape: the general shape of the

fitness landscape around the optimum (Fig. 1(upper

panel)), how this shape changes when additional informa-

tion on the network structure is present (Fig. 1(middle

panel)) and how it changes with an increasing number of

differences in the network structure (Fig. 1(lower panel)). It

can be seen how the FDC is in general positive. However, as

the structure of the network departs from the optimal one,

the scatter plot tends to concentrate in a small cluster on the

upper right corner of the plot, indicating an increase in

problem difficulty. We can thus conclude that, while the

overall FDC is positive as shown in Fig. 1, the landscape is

in fact multimodal, that is, it features many local optima.
The results of our FDC analysis can be summarized as

follows:

. There is a strong positive correlation between
euclidean distance and RSE.

. The fitness landscape exhibits extremely deep
valleys, in which a general purpose continuous
optimization algorithm can be trapped.

. Portions of the search space which correspond to
networks structurally closer to the optimum (i.e., at a
lower Hamming distance) present a smoother fitness
landscape and a higher FDC.

Consider now the case of a general purpose continuous

optimization algorithm, which receives as input a connec-

tivity matrix and which has to minimize RSE by finding the

optimal continuous values for the nonzero elements of

the matrix. The results of the analysis suggest that the closer

the connectivity matrix is to the optimal system matrix, in

terms of Hamming distance, the higher will be the prob-

ability that such an algorithm will reach low RSE values. The

RSE returned by the algorithm can thus be used as a measure

of the fitness of a candidate connectivity matrix.
These considerations motivate the design of the mixed

optimization algorithm presented in this paper, in which a

discrete search component explores the space of network

structures and a continuous search component is exploited

to evaluate the fitness of each structure. The continuous

algorithm searches for the optimal values of the nonzero

elements of the matrix and returns the minimum RSE to the

discrete search component.
The analysis described next is aimed at choosing a good

candidate for the continuous optimization component,

comparing two algorithms from the state of the art.
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4.2 Behavior of Continuous Optimization
Algorithms

In this section, we study the behavior of two algorithms,

NEWUOA [32] and CMA-ES [33], when dealing with the

task described at the end of the previous section: provided

with a connectivity matrix, the algorithms have to minimize
RSE by finding the optimal continuous values for the

nonzero elements of the matrix.
The two algorithms we choose to compare are consid-

ered to be state-of-the-art for continuous derivative-free
optimization [46]:

1. NEWUOA. NEWUOA is a trust-region method [47]
for unconstrained continuous optimization. Typi-
cally, a trust-region method works as follows: at
each iteration, a model of the objective function is
defined over a trust region of a certain radius. The
trust region is centered on the current best-so-far
solution ~P . A trial point~s is then generated such that
a new point ~P þ~s reduces sufficiently the model,
and it is still within the trust region. An evaluation of
the objective function at ~P þ~s is performed, and the
value returned is compared to the prediction of
the model. If the prediction is sufficiently accurate,
the new point is accepted as the new best-so-far
solution, and the next iteration is executed. In the
next iteration, the trust-region radius can be larger or
equal to the one used in the previous iteration.
However, if the prediction is not sufficiently
accurate, the new point is rejected and the next
iteration is executed with a reduced trust-region
radius. For approximating an n-dimensional objec-
tive function, NEWUOA uses a quadratic interpola-
tion of OðnÞ points within the trust region (a
common value being 2nþ 1 points). This fact makes
NEWUOA useful for tackling large-scale optimiza-
tion problems [32]. In addition to the number of
interpolation points, the initial and final trust region
radii are parameters of the method.

2. CMA-ES. The Covariance Matrix Adaptation-Evo-
lution Strategy algorithm belongs to the class of
population-based optimization algorithms called
Evolution Strategies. In this kind of algorithms, a
population of solutions is sampled from a multi-
variate normal distribution, with mean m and
covariance matrix C, for a certain number of
generations; at each generation, the best individuals
are selected and used to adapt the sampling
mechanism, in order to select potentially better
solutions. In CMA-ES, the covariance matrix is
dynamically adapted with three concurring strate-
gies: a) reproduce the best steps in the search space
from the current generation, b) reproduce the set of
moves from the previous generations and c) obtain
uncorrelated steps with step size control. The effect
of the adaptation is to skew the sampling distribu-
tion so to obtain the highest variance along the
steepest direction of the search space, remaining
robust to badly scaled problems and avoiding
premature convergence.

We study the behavior of NEWUOA and CMA-ES when
provided with the same time series used for the FDC
analysis and with the connectivity matrices of the optimal
networks, their aim thus being to find the correct values for
system parameters by minimizing RSE. Both algorithms are
given the same maximum number of function evaluations.

Fig. 2 shows the boxplots of RSE values achieved by
20 runs of both algorithms, with the maximum number of
fitness function evaluations set to 4� 104. From the figure, it
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Fig. 1. Example scatterplots of fitness versus distance from the

optimum, for the three sampling schemes: uninformed sampling (first

panel), informed sampling (second panel), and structural sampling (third

panel). In the third panel, HD stands for Hamming distance.



is clear that CMA-ES obtains RSE values smaller than 10�15 in
almost every run; NEWUOA, on the other hand, gets better
results for some network structures, but for several others it
is very poorly performing when compared to CMA-ES.

The RSE value reached by CMA-ES on a candidate
structure, even with a limited number of fitness function
evaluations, can thus be considered a reliable and stable
estimate of the fitness of the structure; the same is not true
for NEWUOA.

5 MIXED OPTIMIZATION ALGORITHM

The analysis of the fitness landscape described in the
previous section provides evidence in favor of a decom-
position of the problem of biological network inference into
two interconnected subproblems: a discrete search of the
optimal network structure in the space of connectivity
matrices and a continuous search of the optimal network
parameters in IRE , where E is the number of edges in the
network. Moreover, the study of the performance of two
continuous optimization algorithms, NEWUOA and CMA-
ES, suggested that

. CMA-ES exhibits a more stable behavior, when
provided with the correct topology and a limited
number of fitness function evaluations.

. The RSE returned by CMA-ES on a candidate
network structure can be used as an estimate for
the fitness of that particular structure.

In this section, we present MORE, an implementation of
such a mixed discrete/continuous optimization approach:
Section 5.1 describes a basic implementation, exploiting an
Iterative Best Improvement Local Search strategy with
Multiple Restarts for the discrete search step and CMA-ES
for the continuous search step; in Section 5.2, we present a set
of feedback strategies between the two optimization layers
that enhance the performance of the base algorithm;
Section 5.3 presents the ensemble strategy we adopted for
estimating the confidence on each edge of the resulting
network from multiple runs of the discrete optimization step;
Section 5.4 shows the pseudocode of the complete algorithm.

5.1 Base Algorithm

The Iterative Best Improvement Local Search strategy
belongs to the class of Stochastic Local Search (SLS [48])
algorithms, in which a complex or high-dimensional search
space is locally explored, starting from a random solution in
the search space and iteratively moving in the direction that
locally minimizes (or maximizes) an objective function.
From the current position, SLS algorithms iteratively
generate a set of neighbors, i.e., solutions that do not differ
much from the current one, and replace the current solution
with one of the neighbors, based on some acceptance
criterion. The process is iterated until no further improve-
ment of the current solution can be found; in this case, the
current solution is called a local optimum.

The various SLS algorithms differ in the strategies they
adopt to explore the neighborhood, to choose the next
solution and to avoid local optima. In the Iterative Best
Improvement Local Search strategy, the current solution is
iteratively replaced with the best improving solution from
its neighborhood and the process is repeated until a local
optimum is reached. Restaring multiple times the algorithm
from different random solutions guarantees that the
algorithm, if provided with a sufficiently large number of
restarts, eventually converges to the global optimum, i.e., the
best solution in the search space [48].

In our case, the discrete search space consists of all Boolean
connectivity matrices pairs ðAnz;BnzÞ (nz stands for nonzero)
from (2), of size n� n and n�m, where n is the number of
observed variables and m is the number of inputs.

A set of constraints are imposed on feasible matrices
pairs:

. each row of either Anz or Bnz has at least one
element equal to one, thus each variable is controlled
by at least one other variable or one input (and the
number of nonzero elements in ðAnz;BnzÞ is greater
than or equal to minðn;mÞ),

. the number of nonzero elements in Anz and Bnz is
smaller than the user-defined values MA and MB,
respectively, to force global sparsity of the network,

. elements on the diagonal of Anz are zero, i.e., self-
interaction is not allowed.3

Initial matrices are sampled at random: the probability
distribution used for sampling can be exploited to consider
additional knowledge on network structure. When no
information is available, the sampling probability is uni-
form for all edges and such that the majority of sampled
networks are feasible. If additional knowledge on the
presence (or absence) of edges is present, probabilities can
be increased (or decreased) accordingly.

Initial solutions are then locally perturbed to generate
a set of neighboring solutions: as perturbations, we chose
all possible flips of one bit in the connectivity matrices
pair, excluding the flips that lead to unfeasible solutions.
The number of solutions in each neighborhood is thus
O½nðnþmÞ�.

Nonzero parameters of each candidate structure, to-
gether with parameters k1i and k2i for each variable i, are
optimized with CMA-ES; the returned RSE between
observed and estimated temporal profiles is used as cost
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Fig. 2. Boxplots of RSE reached in 20 runs of NEWUOA and CMA-ES

on 20 network instances of 10 nodes, with complete information on the

topology of the networks; the maximum number of function evaluations

for both algorithms is set to 4� 104.

3. This last constraint is in line with the choices made by the DREAM
team [5], but can be relaxed without affecting the global behavior of the
algorithm.



function for the structure. The neighbor solution with the
lowest RSE value is chosen as origin of the new neighbor-
hood, and the process is iterated until no improving
solution can be found in the current neighborhood.

The complete algorithm is then restarted a maximum of
R times, to increase the possibility of exploring interesting
regions of the search space.

5.2 Enhanced Algorithm

In the basic version of our mixed algorithm, the two
optimization components, Iterated Best Improvement Local
Search and CMA-ES, communicate with each other ex-
changing candidate structures and RSE values. In this section,
we describe a set of feedback techniques for increasing the
information exchange between the two components and
enhancing the overall algorithm behavior.

5.2.1 Discrete to Continuous Optimization Feedback

To exploit locality and cache previously computed results
while evaluating the neighborhood of a candidate network
structure, we developed the following feedback strategies
from the discrete to the continuous optimization layer:

. Each neighbor differs from the current solution by
just one bit, i.e., by the presence or absence of an edge
in the corresponding network. Since the network is
sparse, there can be regions of the network which are
not affected by the edge modification, being up-
stream in the signal flow through the network.
Continuous values for the parameters corresponding
to edges in these regions do not need to be
reoptimized by CMA-ES and are thus kept fixed.

. For the parameters that need to be reoptimized in each
neighbor, initial search values for CMA-ES are chosen
equal to the ones obtained when evaluating the
current solution, under the assumption that optimal
parameters values for two networks that differ by just
one edge are probably close to each other.

The motivation for these strategies is that CMA-ES, when
used to optimize a smaller set of values, tends to converge
faster. Furthermore, starting from a good search point has a
positive effect on continuous optimization, given the
positive fitness-distance correlation reported in Section 4.

5.2.2 Continuous to Discrete Optimization Feedback

To provide additional feedback from CMA-ES, thus redu-
cing the size of the search space for subsequent iterations
and restarts of the Best Improvement Local Search, we
developed the following feedback strategies from the
continuous to the discrete optimization layer:

. When all solutions in the neighborhood have been
evaluated, some elements of the best neighbor
solution may be close to zero, i.e., with absolute
value below a fixed threshold. If that is the case,
when the center of the next neighborhood is chosen,
these elements are set to zero, thus implementing a
longer move toward more promising regions of the
search space.

. Elements of matrices Anz and Bnz, when set to zero by
the previous strategy, are kept to zero for the
subsequent iterations and restarts of the Local Search
algorithm. Note that, on the contrary, elements

flipped to zero by the local search procedure can still
be reflipped to one.

5.3 Ensemble Strategy

The result of R restarts of the discrete optimization

component consists of an ensemble of R matrix pairs, each

one with a locally optimal structure and with nonzero

elements estimated by the continuous optimization compo-

nent. Rather than simply taking the matrix pair with the

lowest RSE, we decided to adopt the signed voting strategy

described in [28] for estimating the confidence on each of

the edges of the resulting network from the whole ensemble

of solutions. Such an approach, in the presence of noise in

the data, was proven to lead to network predictions which

are more accurate than any of the individual networks

taken alone [28].
From each matrix pair i, i ¼ 1 . . .R, we retain the

network structure and the sign of each edge in the signed

connectivity matrices ðAs
nz;B

s
nzÞi (s stands for signed):

elements of the matrices are set to 1 if the corresponding

edges are present in the inferred networks with positive

sign, �1 when present with negative sign and 0 otherwise.

The signed voting scheme consists in summing each

element of the signed connectivity matrix pairs across the

R restarts and taking the absolute value of the result: this

measure can be considered an indicator of the confidence

on the corresponding edge, ranging from zero to R. The

computational complexity of the signed voting strategy is

Oðn2RÞ, where n is the number of nodes in the network.

5.4 Pseudocode

The pseudocode of the complete algorithm is the following:

D-SEARCHðD;U; RÞ
1 Ssens ¼ ;
2 for i ¼ 1 to R

3 Sample a feasible solution Scurr ¼ ðAnz;BnzÞ
4 rows ¼ Boolean vector, each value set to TRUE

5 clbest ¼ C-SEARCHðD;U;Scurr; rowsÞ
6 cnhbest ¼ clbest
7 while improvement

8 improvement ¼ FALSE

9 for each element e 2 Scurr
10 Snh ¼ FLIPðScurr; eÞ
11 if ISFEASIBLEðSnhÞ
12 rows ¼ PROPAGATEðScurr; eÞ
13 cnh ¼ C-SEARCHðD;U;Snh; rowsÞ
14 if cnh < cnhbest
15 cnhbest ¼ cnh
16 Snhbest ¼ Snh
17 improvement ¼ TRUE

18 ZERO-SETðSnhbestÞ
19 if improvement

20 clbest ¼ cnhbest
21 Scurr ¼ Snhbest
22 Ssi ¼ ðAs

nz;B
s
nzÞi ¼ SIGNðScurrÞ

23 Ssens ¼ Ssens [ Ssi
24 Sconf ¼ SIGNED-VOTEðSsensÞ
25 return Sconf
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C-SEARCHðD;U;S ¼ ðAnz;BnzÞ; rowsÞ
// optimize nonzero elements of S and

// all the elements of K1 and K2

1 size ¼ NONZEROSðS; rowsÞ þ 2n

2 if first call of the procedure

// Evaluating Scurr
3 xstart ¼ size random values

4 else

// Evaluating Snh
5 if the current bit flip is 1! 0

6 xstart ¼ ðsize� 1Þ optimal values for Scurr
7 else

8 xstart ¼ size optimal values for Scurr,

plus an additional random value.

9 cost ¼ CMA-ESðsize; xstart;D;UÞ
10 return cost

The discrete optimization procedure receives as input

the data matrix of time course experiments Dn�T , the

temporal profiles of inputs Um�T and the number of Local

Search restarts R and returns a pair of confidence matrices

Sconf ¼ ðAn�n
conf ;B

n�m
conf Þ, where each element of the two

matrices reports the confidence on the presence of the

corresponding edge in the network, ranging from 0 to R. In

each of the R iterations from line 2 of D-SEARCH, an initial

solution is sampled at random and evaluated (lines 3-6); at

each iteration, the process of neighborhood generation (10-

12), neighbor evaluation (lines 13-18) and update of the

current solution (lines 19-21) is repeated until a local

optimum is reached.

The procedure FLIPðS; eÞ flips the bit corresponding to

edge e in either Anz or Bnz to its complement. ISFEASIBLEðSÞ
returns true if S does not violate the constraints reported in

Section 5.1. PROPAGATEðS; eÞ propagates the effects of the

bit flip e in the matrices Anz and Bnz: a bit flip consists in the

addition or the removal of an edge in the network, thus all

edges downstream of the modification are affected and

PROPAGATEðS; eÞ returns TRUE for each row corresponding

to the destination of an affected edge.

The procedure ZERO-SETðSÞ sets to zero the elements of

Anz and Bnz which have been estimated as close to zero by

C-SEARCH. These elements are avoided during the neigh-

borhood generation (line 10) in all the subsequent iterations

of the algorithm, thus greatly reducing the size of the search

space.

The procedure SIGNðSÞ, applied to the local optima

resulting from each restart of D-SEARCH, returns a pair of

signed connectivity matrices ðAs
nz;B

s
nzÞ and the ensemble of

signed connectivity matrices is saved in Ssens. The procedure

SIGNED-VOTE, applied to Ssens, computes the confidence on

each edge by summing the R signed connectivity matrices

and taking the absolute value of the results.

The continuous optimization procedure is exploited to

evaluate candidate network structures: the procedure

searches for the optimal values of nonzero elements of

matrices Anz and Bnz and of the elements of matrices K1

and K2. When called for the first time, the procedure starts

from a complete random vector4 xstart. The procedure scores

its progress with the RSE between real-time course data D

and time course data generated with the current values for

the set of parameters to be optimized; the optimization is

carried out through the CMA-ES algorithm.
Subsequent calls of C-SEARCH need only to optimize

nonzero elements of the rows of A and B indicated by rows

(C-SEARCH, line 1) and can exploit the parameters values
optimized in the previous function call as starting point for
the search (lines 5-8).

6 RESULTS ON SIMULATED DATA

To assess the average performance of MORE in reverse
engineering, we test it on a simulated data set generated as
described in Section 3. The effectiveness of the mixed
optimization strategy is assessed by comparing the results
of MORE with the ones of a standard continuous optimiza-
tion approach, obtained by running CMA-ES on the entire
system matrix (excluding the diagonal, which is fixed to
zero). Furthermore, the effectiveness of the enhancements
described in Section 5.2 is assessed by comparing the results
of the base and enhanced version of MORE.

Simulated data are composed of temporal profiles
generated from three groups of 20 networks of size 5, 8,
and 10 nodes each. Problem sizes are in line with
experimental results from the state of the art [9], [19], [45].
From each network, we generate four sets of five time
series: each time series is obtained by randomly initializing
the system and by sampling its temporal evolution at
10 logarithmically spaced time points, thus each set consists
of 50 time points. Simulated noise with constant coefficient
of variation is then added to temporal profiles: we consider
the four cases of no (CV ¼ 0%), low (CV ¼ 2%), medium
(CV ¼ 5%) and high (CV ¼ 10%) noise.

We set the number R of random restarts of the two
versions of MORE to 20. As mentioned in Section 3, the
dynamics of the simulated systems are described just by the
matrix An�n: to enforce the sparsity of the network, we set
the maximum number MA of nonzero elements of A to 2n.

For a fair comparison, in the standard continuous
optimization approach we consider the results of 20 random
restarts of CMA-ES. No limit on the maximum number of
function evaluations is given to CMA-ES in this case, thus
relying only in its internal stopping criteria.5

When the result of a reverse engineering algorithm
consists of a set of confidence levels, one for each edge, it is
common practice [17], [28] to compare different algorithms
by means of the Area Under the Precision versus Recall
curve (AUC PvsR). Precision (P) and recall (R) are widely
used in the reverse engineering community to assess
algorithmic performance [2] and are defined as follows:
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4. The elements of matrices A and B are sampled from normal
distributions Nð0; amax=3Þ and Nð0; bmax=3Þ, where amax and bmax are the
maximum allowed absolute values for the elements of matrices A and B,
respectively. The elements of matrices K1 and K2 are sampled from the log-
normal distribution 10Nð0;kmax=3Þ, for allowed elements of K1 and K2 in the
range ½10�kmax ; 10kmax �.

5. Execution halts if the difference between the best values in two
consecutive generations is less than 10�17 or if one element of the diagonal
of the covariance matrix increases more than three orders of magnitude.



P ¼ tp

tpþ fp ;

R ¼ tp

tpþ fn ;

where tp is the number of true positives, i.e., the number of
relations correctly identified by the algorithm, fp is the
number of false positives, i.e., the number of relations
identified by the algorithm which are not correct, and fn is
the number of false negatives, i.e., the number of relations
present in the real network but not identified.

The Area Under the P versus R curve is obtained by sorting
the edges in decreasing order of confidence, adding them to
the network one at a time, computing each time P and R of the
partial networks, drawing them on the P versus R plane and
computing the area under the resulting curve. For the two
versions of MORE, we exploit directly the confidence matrix
returned by the algorithm, while for CMA-ES we merge the
results of the 20 runs by averaging the values of each weight
matrix element across the different runs.

The whole process of 20 subsequent random restarts of
the three algorithms is repeated, with different levels of
noise, on the four sets of time series generated for each of the
20 simulated networks and for each problem size. Together
with the area under the P versus R curve, we measure also
the number of objective function evaluations needed by
each algorithm to complete the 20 random restarts.

All tests are run on a single Intel Xeon E5410 quad core
2.33 GHz processor. The average computational time for a
function evaluation, consisting in the generation of tempor-
al profiles from the estimated model and of the computation

of RSE, is independent of the reverse engineering algorithm
and is approximately equal to 0.52, 0.79, and 1.00 ms for
networks of size 5, 8, and 10, respectively.

Fig. 3(top row) reports the median � median absolute
deviation6 of the area under the P versus R curve obtained by
the three algorithms for networks of sizes 5, 8, and 10 and for
the different levels of noise. Fig. 3(bottom row) reports the
median � median absolute deviation of the number of
function evaluations needed by the three algorithms to
complete the 20 restarts.

All comparisons between the algorithms are carried out
with paired Wilcoxon signed-rank tests: differences are
considered significant for p-values < 0:05.

Analyzing first the behavior of CMA-ES, one can observe
that the algorithm is considerably faster than both versions
of MORE in reaching convergence (all p-values < 2� 10�14)
but that its performance is strongly affected by noise:
performance is close to optimal in the absence of noise
(median AUC PvsR > 0:96 for all network sizes) but, as long
as even low levels of noise are present in the data, it quickly
deteriorates and becomes significantly lower than the one of
both versions of MORE (all p-values < 10�4).

Comparing the two versions of MORE, one can observe
that the increase in AUC PvsR of the enhanced version over
the base version is significant only for lower levels of noise
(p-values < 0:05 for CV ¼ 0% on networks of five nodes, for
CV ¼ 0%; 2%; 5% on networks of eight nodes and for
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Fig. 3. (Top row) Median of the area under the Precision versus Recall curve obtained by CMA-ES and by the base and enhanced version of MORE
on four runs for 20 networks of size 5 (first column), 8 (second column), and 10 (third column), for different coefficient of variations of the simulated
noise. Each run consists of 20 random restarts of either the discrete optimization procedure (for the two versions of MORE) or of the CMA-ES
algorithm. (Bottom row) Number of objective function evaluations needed to complete the 20 random restarts. Whiskers in all plots extend to
�1 median absolute deviation.

6. Median and median absolute deviation, rather than average and
standard deviation, are chosen because they are better suited to represent
distributions that can be far from Gaussian.



CV ¼ 0% on networks of 10 nodes), but that the number of
objective function evaluations required by the enhanced
version is always significantly lower than the ones required
by the base version (all p-values < 2� 10�11).

Experimental results, thus, show that the mixed dis-
crete/continuous optimization approach outperforms stan-
dard continuous optimization, as long as noise is present in
the data. Furthermore, results prove the effectiveness of the
feedback strategies between the two optimization compo-
nents in terms of reduction of computation time.

Comparing MORE with the state of the art is not
straightforward: we identified four algorithms from the
literature, namely Marbach et al. [27], Chen et al. [21], and
Xu et al. [9], [19], which are all based on stochastic local
search methods and infer dynamical systems similar to the
one we adopted. In the aforementioned papers, perfor-
mance is assessed on simulated and real time series of 26 to
90 samples, generated from one or two networks of 4 to 11
nodes. Accuracy, as in our case, is close to optimal for
smaller networks and lower levels of noise and decreases as
network size and noise increase, in a range similar to the
one observed for MORE.

Quantitative comparison would require to assess all
algorithms on the same set of data and networks, but source
code is not available and the associated publications do not
contain enough information to fully reimplement the
proposed algorithms. Furthermore, noise models used to
simulate test data are different and complete details for
replicating the same noise conditions are missing in the text.

However, from a qualitative comparison, we can con-
clude that MORE is competitive with other state-of-the-art
approaches.

7 RESULTS ON REAL DATA

To study the behavior of MORE on a real scenario, we
tested it on the Predictive Signaling Network Modeling
challenge of the DREAM4 competition [3], [4], [5].

The data set consists of a set of time series of protein
activity level of HepG2 cell lines, gathered after a number of
systematic perturbations of the biological system.

The activity of seven phosphoproteins (AKT, ERK12, Ikb,
JNK12, p38, HSP27, MEK12) is measured at three time
points (0, 30 minutes, and 3 hours) during 25 different
perturbations: each perturbation consists in the combina-
torial treatment of the system with zero or one cytokine
(TNFa, IL1a, IGF1, TGFa) acting as a stimulus and zero or
one inhibitor (MEKi, p38i, PI3Ki, IKKi).

We model protein level dynamics, rescaled in the range
½0; 1� by dividing each sample for the saturation limit of
the detector (29,000), with the complete system from (1):
the seven phosphoproteins are modeled as observed
variables x1 . . .x7, whereas the four cytokines and the
two inhibitors PI3Ki and IKKi are modeled as constant
inputs u1; . . . ; u6, fixed to either 1 or 0 if present or absent
in the particular perturbation experiment. Inhibitors MEKi
and p38i, directly targeting two observed variables, are
treated differently: when the inhibitor is present, the
inhibited variable is set to zero and kept constant for
the whole perturbation experiment.

The error function to be minimized is Normalized
Squared Error (NSE), defined by DREAM4 organizers as

NSE ¼ 1

Tn

XT

t¼1

Xn

i¼1

x̂iðtÞ � xiðtÞ½ �2

3002 þ 0:08 � xiðtÞ½ �2
:

In addition to protein expression time series, DREAM4
organizers provided a network of canonical signaling
pathways relating the observed variables, gathered from
the literature (Fig. 4(Top)). It has to be stressed that this is
not necessarily the true network underlying the data,
which can possibly depend on the specific cell line: the
canonical network has in fact to be customized with
the addition or removal of edges, to accurately represent
the provided data set.

To enforce network sparsity while keeping the prior

network feasible, we set the maximum number of nonzero

elements for matrices A and B, MA and MB, to 7 and 23,

respectively. The number R of restarts of the discrete

optimization component was set to 20.
We first run the full procedure without any a priori

information on network structure, by sampling sparse
initial networks for each random restart from the complete
graph. The result of the ensemble learning procedure is
represented in Fig. 4(bottom left): the gray levels are
proportional to the confidence on each edge. Edges with
confidence below 40 percent are not considered as in [28], in
which the signed voting ensemble strategy is proposed.

As it is clear from the figure, the network is sparse and the
majority of the identified edges are present also in the custom

network (solid lines). Only one edge that is not present in the

canonical network was identified (dashed line).
The canonical network was then exploited as a priori

information, by letting the algorithm sample the edges of

the initial networks for each random restart only from the

edges of the canonical network. Please note that this does

not prevent the algorithm from adding edges not present in

the canonical network during the Local Search procedure.
The result of the ensemble learning procedure is

represented in Fig. 4(bottom right). As it is clear from the
figure, the algorithm removed 11 edges from the canonical
network and added only one edge, the same added when
no a priori information was provided.

Moreover, the edges inferred in the former case
(Fig. 4(bottom left)) are an exact subset of the ones inferred
in this case, with large agreement on the confidence levels,
thus suggesting consistency in the results.

Finally, we compared the NSE score of the two final
networks with the score of the single networks in the
ensemble, each one resulting from a single restart of the
discrete search procedure. The NSE of the network obtained
without a priori information (Fig. 4(bottom left)) lies in the
lowest quartile of the scores of the networks in the
ensemble, while the network obtained exploiting a priori
information (Fig. 4(bottom right)) has a NSE score lower
than the one of any of the single networks.

8 CONCLUSIONS

In this paper, we propose MORE, a mixed discrete and

continuous optimization algorithm for the problem of
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fitting a sparse system of nonlinear differential equations to

biological time series.
MORE is made of two interacting layers, an Iterated Best

Improvement Local Search component, which searches in

the discrete space of network structures, and a Covariance

Matrix Adaptation-Evolution Strategy component for the

optimization of continuous system parameters. A set of

additional feedback strategies between the two layers were

designed for the algorithm, to cache and reuse information

gathered during the exploration of the search space and to

exploit locality and problem-specific features. The stochas-

ticity of the local search component is exploited to gather an

ensemble of network solutions, from which confidence

values for the edges are computed with a voting strategy.
The particular design of the algorithm is based on an

analysis of the fitness landscape, which suggests the

effectiveness of such an approach in solving the reverse

engineering problem.
Keeping separate the two tasks of searching in the space

of network structures and of optimizing continuous para-

meters allows us to easily handle the optimization of the

system matrix as a whole, rather than decomposing the

problem and solving it for each variable. This strategy has

three main advantages: first, the numerical integration of

the whole system limits the effects of noise and requires

fewer time points for accurately estimating the temporal

evolution of the system. Second, system sparsity can be

handled globally by limiting the total number of edges in

the network. Third, a priori information on network

structure can be seamlessly exploited in the search process.
Extensive testing on a rich set of simulated time course

experiments proved the effectiveness of the mixed discrete

and continuous optimization approach: as long as even low

levels of noise are present in the data, in fact, MORE

significantly outperforms a state-of-the-art continuous

optimization algorithm (CMA-ES) in terms of accuracy of

the results. Moreover, the designed feedback strategies

between the two optimization layers are proven effective in

significantly reducing the computation time. As far as a

comparison is possible, we showed that MORE is compe-

titive with other state-of-the-art approaches on problems of

the same size.
It is worth mentioning, moreover, that the many papers

proposing novel reverse engineering algorithms assess

performance on a small set of networks, usually not more

than 3 or 4. We believe that a richer data set, like the one

adopted in this paper, is needed to properly assess a reverse

engineering algorithm.
The application of MORE to a real data set of protein

activity levels demonstrated its ability in handling a priori

information and network sparsity. Without a priori in-

formation, the algorithm identified a network of interaction

between proteins close to the canonical pathway, retaining

edges that could be specific of the particular cell line and

excluding potentially unessential edges. The introduction of

a priori information results in an additional set of edges in
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Fig. 4. (Top) Canonical network. (Bottom left) Network inferred without a priori information. (Bottom right) Network inferred with the canonical
network as a priori information. The color code for the nodes is: green—stimuli, red—unobserved inhibited proteins, blue—observed proteins,
magenta—observed inhibited proteins. Gray levels of the edges are proportional to the confidence on them. Dashed edges are inferred by MORE
but are not present in the canonical network.



the inferred network, whose importance is supported by a
lower error in estimating the temporal profiles.

We believe that the effective exploitation of a priori
information will be a key factor for the application of our
algorithm to larger biological systems, by iteratively solving
smaller subsystems and exploiting the results as a priori
information for the solution of larger systems.
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M.J. Moné, K.N. Rybakova, M. Eijken, H.J. van Leeuwen, and J.L.
Snoep, “Systems Biology toward Life in Silico: Mathematics of the
Control of Living Cells,” J. Math. Biology, vol. 58, nos. 1/2, pp. 7-
34, Jan. 2009.

[8] S. Kimura, S. Nakayama, and M. Hatakeyama, “Genetic Network
Inference as a Series of Discrimination Tasks,” Bioinformatics,
vol. 25, no. 7, pp. 918-925, 2009.

[9] R. Xu, D. Wunsch II, and R. Frank, “Inference of Genetic
Regulatory Networks with Recurrent Neural Network Models
Using Particle Swarm Optimization,” IEEE/ACM Trans. Computa-
tional Biology and Bioinformatics, vol. 4, no. 4, pp. 681-692, Oct.-Dec.
2007.

[10] M. Arnone and E. Davidson, “The Hardwiring of Development:
Organization and Function of Genomic Regulatory Systems,”
Development, vol. 124, pp. 1851-1864, 1997.

[11] A.-L. Barabasi and R. Albert, “Emergence of Scaling in Random
Networks,” Science, vol. 286, no. 5439, pp. 509-512, Oct. 1999.

[12] E. Ravasz, A.L. Somera, D.A. Mongru, Z.N. Oltvai, and A.L.
Barabasi, “Hierarchical Organization of Modularity in Meta-
bolic Networks,” Science, vol. 297, no. 5586, pp. 1551-1555,
Aug. 2002.

[13] P. Le Phillip, A. Bahl, and L.H. Ungar, “Using Prior Knowledge to
Improve Genetic Network Reconstruction from Microarray Data,”
Silico Biology, vol. 4, no. 3, pp. 335-353, 2004.

[14] P. D’Haeseleer, X. Wen, S. Fuhrman, and R. Somogyi, “Linear
Modeling Of mRNA Expression Levels during CNS Develop-
ment and Injury,” Proc. Pacific Symp. Biocomputing, pp. 41-52,
1999.

[15] T.S. Gardner, D.di Bernardo, D. Lorenz, and J.J. Collins, “Inferring
Genetic Networks and Identifying Compound Mode of Action via
Expression Profiling,” Science, vol. 301, no. 5629, pp. 102-105, July
2003.

[16] M. Bansal, G.D. Gatta, and D. di Bernardo, “Inference of Gene
Regulatory Networks and Compound Mode of Action from Time
Course Gene Expression Profiles,” Bioinformatics, vol. 22, no. 7,
pp. 815-822, 2006.

[17] D. Nam, S.H. Yoon, and J.F. Kim, “Ensemble Learning of Genetic
Networks from Time-Series Expression Data,” Bioinformatics,
vol. 23, no. 23, pp. 3225-3231, 2007.

[18] S. Kimura, K. Ide, A. Kashihara, M. Kano, M. Hatakeyama, R.
Masui, N. Nakagawa, S. Yokoyama, S. Kuramitsu, and A.
Konagaya, “Inference of S-System Models of Genetic Networks
Using a Cooperative Coevolutionary Algorithm,” Bioinformatics,
vol. 21, no. 7, pp. 1154-1163, 2005.

[19] R. Xu, G.K. Venayagamoorthy, and D.C. Wunsch II, “Modeling of
Gene Regulatory Networks with Hybrid Differential Evolution
and Particle Swarm Optimization,” Neural Networks, vol. 20, no. 8,
pp. 917-927, 2007.

[20] P.-K. Liu and F.-S. Wang, “Inference of Biochemical Network
Models in S-System Using Multiobjective Optimization Ap-
proach,” Bioinformatics, vol. 24, no. 8, pp. 1085-1092, 2008.

[21] C.M. Chen, C. Lee, C.L. Chuang, C.C. Wang, and G. Shieh,
“Inferring Genetic Interactions via a Nonlinear Model and an
Optimization Algorithm,” BMC Systems Biology, vol. 4, no. 1,
article no. 16, 2010.

[22] R. Tibshirani, “Regression Shrinkage and Selection via the Lasso,”
J. Royal Statistical Soc. (Series B), vol. 58, pp. 267-288, 1996.

[23] H. Zou and T. Hastie, “Regularization and Variable Selection via
the Elastic Net,” J. Royal Statistical Soc. Series B, vol. 67, no. 2,
pp. 301-320, 2005.

[24] F. Ferrazzi, P. Sebastiani, M.F. Ramoni, and R. Bellazzi, “Bayesian
Approaches to Reverse Engineer Cellular Systems: A Simulation
Study on Nonlinear Gaussian Networks,” BMC Bioinformatics,
vol. 8, Suppl. 5, S2 (epub) 2007.

[25] G.-W. Weber, O. Defterli, S.Z. Alparslan Gök, and E. Kropat,
“Modeling, Inference and Optimization of Regulatory Networks
Based on Time Series Data,” European J. Operational Research,
vol. 211, pp. 1-14, 2011.

[26] R. Albert, “Scale-Free Networks in Cell Biology,” J. Cell Science,
vol. 118, pp. 4947-4957, 2005.

[27] D. Marbach, C. Mattiussi, and D. Floreano, “Replaying the
Evolutionary Tape: Biomimetic Reverse Engineering of Gene
Networks,” Annals of the New York Academy of Sciences, vol. 1158,
pp. 234-245, 2009.

[28] D. Marbach, C. Mattiussi, and D. Floreano, “Combining Multiple
Results of a Reverse Engineering Algorithm: Application to the
DREAM Five Gene Network Challenge,” Ann. New York Academy
of Sciences, vol. 1158, pp. 102-113, 2009.

[29] T. Jones and S. Forrest, “Fitness Distance Correlation as a Measure
of Problem Difficulty for Genetic Algorithms,” Proc. Sixth Int’l
Conf. Genetic Algorithms, pp. 184-192, 1995.

[30] T. Jones, “Evolutionary Algorithms, Fitness Landscapes and
Search,” Working Papers 95-05-048, Santa Fe Inst., May 1995.

[31] F. Sambo, M. Montes de Oca, B. Di Camillo, and T. Stützle, “On the
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