
Chapter 8
Parameter Adaptation in
Ant Colony Optimization

Thomas Stützle, Manuel López-Ibáñez, Paola Pellegrini, Michael Maur,
Marco Montes de Oca, Mauro Birattari, and Marco Dorigo

8.1 Introduction

Ant colony optimization (ACO) is a metaheuristic inspired by the foraging behavior
of ants [13, 9, 14, 11, 15, 8]. In ACO algorithms, artificial ants are probabilistic so-
lution construction procedures that are biased by artificial pheromones and heuristic
information. Heuristic information can be derived from a problem instance to guide
ants in the solution construction process. Pheromones are represented as numerical
information that is modified iteratively to reflect the algorithm’s search experience.
Modifications bias the search towards good quality solutions [45].

The behavior of ACO algorithms depends strongly on the values given to pa-
rameters [11, 18]. In most ACO applications, parameter values are kept constant
throughout each run of the algorithm. However, varying the parameters at compu-
tation time, either in prescheduled ways or depending on the search progress, can
enhance the performance of an algorithm. Parameter control and parameter adap-
tation are recurring themes in the field of evolutionary algorithms (EAs) [31]. The
adaptation of parameters while solving a problem instance by exploiting machine
learning techniques is also the unifying theme in the research area of reactive search
[3]. In the ACO literature as well, several strategies have been proposed and tested
for modifying parameters while solving a problem instance.

Thomas Stützle, Manuel López-Ibáñez, Marco Montes de Oca, Mauro Birattari, Marco Dorigo
IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
e-mail: {stuetzle,manuel.lopez-ibanez,mmontes,mbiro,mdorigo}@ulb.ac.
be

Michael Maur
Fachbereich Rechts- und Wirtschaftswissenschaften, TU Darmstadt, Darmstadt, Germany
e-mail: maur@stud.tu-darmstadt.de

Paola Pellegrini
Dipartimento di Matematica Applicata, Università Ca’ Foscari Venezia, Venezia, Italia
e-mail: paolap@unive.it

Y. Hamadi et al. (eds.), Autonomous Search,
DOI 10.1007/978-3-642-21434-9 8,
© Springer-Verlag Berlin Heidelberg 2011

191

mailto:stuetzle@ulb.ac.be
mailto:manuel.lopez-ibanez@ulb.ac.be
mailto:mmontes@ulb.ac.be
mailto:mbiro@ulb.ac.be
mailto:mdorigo@ulb.ac.be
mailto:mdorigo@ulb.ac.be
mailto:maur@stud.tu-darmstadt.de
mailto:paolap@unive.it
http://dx.doi.org/10.1007/978-3-642-21434-9_8

192 Stützle, López-Ibáñez, Pellegrini, Maur, Montes de Oca, Birattari, and Dorigo

In this chapter, we first review available research results on parameter adapta-
tion in ACO algorithms. We follow the three classes of parameter control strategies
discussed by Eiben et al. [17]. Then, we analyze the development of the solution
quality reached by ACO algorithms over computation time for specific parameter
values. The goal is to identify situations where the best fixed parameter settings
depend strongly on the available computation time because it is exactly in such sit-
uations that prescheduled variation of parameter values can improve strongly the
anytime performance [44] of an algorithm. We observe strong dependencies for the
MAX-MIN Ant System (MMAS) [42], and we show that prescheduled parameter
variation actually leads to much improved behavior of MMAS over computation
time without compromising the final solution quality obtained.

This chapter is structured as follows. In Section 8.2 we give an introductory
description of the main ACO variants, which are also mentioned later in the
chapter. After a short review of parameter adaptation in Section 8.3, we dis-
cuss relevant literature concerning ACO in Section 8.4. The experimental part
in this chapter is divided into two sections: Section 8.5 describes experiments
with fixed parameter settings, whereas Section 8.6 describes experiments with pre-
scheduled parameter variation. From the review of the literature and our experi-
mental study, we provide some conclusions and suggestions for future research in
Section 8.7.

8.2 Ant Colony Optimization

The earliest ACO algorithms used the traveling salesman problem (TSP) as an ex-
ample application. The TSP is typically represented by a graph G = (V,E), V being
the set of n = |V | vertices, representing the cities, and E being the set of edges that
fully connect the vertices. A distance di j is associated with each edge (i, j). The
objective is to find a Hamiltonian cycle of minimum total cost. The TSP is a com-
putationally hard problem, but the application of ACO algorithms to it is simple,
which explains why ACO applications to the TSP have played a central role in the
development of this algorithmic technique.

8.2.1 Ant Colony Optimization for the TSP

When applying ACO to the TSP, a pheromone value τi j is associated with each edge
(i, j) ∈ E. The pheromone value represents the attractiveness of a specific edge for
the ants, according to the experience gained at runtime: the higher the amount of
pheromone on an edge, the higher the probability that ants choose it when con-
structing solutions. Pheromone values are iteratively updated by two mechanisms:
pheromone evaporation and pheromone deposit. In addition to the pheromone trails,
the ants’ solution construction process is also biased by a heuristic value ηi j = 1/di j,

8 Parameter Adaptation in Ant Colony Optimization 193

procedure ACOMetaheuristic
ScheduleActivities

ConstructSolutions
DaemonActions //optional
UpdatePheromones

end-ScheduleActivities
end-procedure

Fig. 8.1: ACO metaheuristic for NP-hard problems in pseudo-code

which represents the attractiveness of each edge (i, j) from a greedy point of
view.

The algorithmic outline of an ACO algorithm (see Figure 8.1) contains three
main procedures: ConstructSolutions, DaemonActions, and UpdatePheromones. The
main characteristics of these procedures are as follows.

• ConstructSolutions. This procedure includes the routines needed for ants to con-
struct solutions incrementally. After the selection of the starting city, one node
at a time is added to an ant’s path. An ant’s decision about where to go next is
biased by the pheromone trails τi j and the heuristic information ηi j. In general,
the higher the two values, the higher the probability of choosing the associated
edge. Typically, two parameters, α > 0 and β ≥ 0, are used to weigh the relative
influence of the pheromone and the heuristic values, respectively. The rule that
defines the ant’s choice is specific to each ACO variant.

• DaemonActions. This procedure comprises all problem-specific operations that
may be considered for boosting the performance of ACO algorithms. The main
example of such operations is the introduction of a local search phase. In addi-
tion, daemon actions implement centralized tasks that cannot be performed by
an individual ant. This type of procedures is for optional use, but typically sev-
eral daemon actions are very useful for significantly improving the performance
of ACO algorithms [11].

• UpdatePheromones. This procedure updates the pheromone trail values in two
phases. First, pheromone evaporation is applied to decrease pheromone values.
The degree of decrement depends on a parameter ρ ∈ [0,1], called evapora-
tion rate. The aim of pheromone evaporation is to avoid an unlimited increase
of pheromone values and to allow the ant colony to forget poor choices made
previously. A pheromone deposit is then applied to increase the pheromone
values that belong to good solutions the ants have generated. The amount of
pheromone deposited and the solutions considered are peculiar to each ACO
variant.

ACO algorithms involve a number of parameters that need to be set appropri-
ately. Of these, we already have mentioned α and β , which are used to weigh the
relative influence of the pheromone and heuristic values in the ants’ solution con-
struction. The role of these parameters in biasing the ants’ search is intuitively sim-
ilar. Higher values of α emphasize differences in the pheromone values, and higher

194 Stützle, López-Ibáñez, Pellegrini, Maur, Montes de Oca, Birattari, and Dorigo

values of β have the same effect on the heuristic values. The initial value of the
pheromones, τ0, has a significant influence on the convergence speed of the algo-
rithm; however, its recommended setting depends on the particular ACO algorithm.
The evaporation rate parameter, ρ , 0 ≤ ρ ≤ 1, regulates the degree of the decrease
in pheromone trails. If ρ is low, the influence of the pheromone values will persist
longer, while high values of ρ allow fast forgetting of previously very attractive
choices and, hence, allow faster focus on new information that incorporate into the
pheromone matrix. Another parameter is the number of ants in the colony, m. For
a given computational budget, such as maximum computation time, the number of
ants is a critical parameter for determining the trade-off between the number of it-
erations that can be made and how broad the search is at each of the iterations. In
fact, the larger the number of ants per iteration, the fewer the iterations of the ACO
algorithm.

8.2.2 ACO Variants

The ACO framework can be implemented in many different ways. In the literature,
several ACO algorithms have been proposed, which differ in some choices charac-
terizing the ConstructSolutions and UpdatePheromones procedures. Three of the main
variants are described next. For a description of other variants we refer the interested
reader to Dorigo and Stützle [11].

8.2.3 Ant System

Ant System (AS) is the first ACO algorithm proposed in the literature [12, 13]. In
AS, an ant k in node i chooses the next node j with probability given by the random
proportional rule, defined as

pi j =
[τi j]

α · [ηi j]
β

∑
h∈Nk

[τih]
α · [ηih]

β , (8.1)

where Nk is its feasible neighborhood. The feasible neighborhood excludes nodes
already visited in the partial tour of ant k, and it may be further restricted to a can-
didate set of the nearest neighbors of a city i. Once an ant has visited all nodes, it
returns to its starting node.

During the execution of the UpdatePheromones procedure in AS, all m ants de-
posit pheromones at each iteration. The pheromone trail values are updated as

τi j ← (1−ρ) · τi j +
m

∑
k=1

Δτk
i j, (8.2)

8 Parameter Adaptation in Ant Colony Optimization 195

where Δτk
i j is defined as

Δτk
i j =

⎧
⎨

⎩

F(k) if edge (i, j) is part of the solution constructed by ant k,

0 otherwise,
(8.3)

where F(k) is the amount of pheromone deposited on the edges of the solution
constructed by ant k. F(k) is equal to the reciprocal of the cost of the solution con-
structed by ant k, possibly multiplied by a constant Q. Hence, the better the solution,
the higher the amount of pheromone deposited by an ant.

8.2.4 MAX–MIN Ant System

MAX–MIN Ant System (MMAS) is an improvement over the AS algorithm [42].
The main difference is the handling of the pheromone trails update. Firstly, only one
solution is used for the pheromone deposit. This is typically either the iteration-best
solution or the best-so-far solution, that is, the best solution since the start of the
algorithm. Secondly, all pheromone values are bounded by the interval [τmin,τmax].
The pheromone update rule used is

τi j ← max
{

τmin, min{τmax,(1−ρ) · τi j +Δτbest
i j }

}
(8.4)

where Δτbest
i j is defined as

Δτbest
i j =

⎧
⎨

⎩

F(sbest) if edge (i, j) is part of the best solution sbest,

0 otherwise.
(8.5)

F(sbest) is the reciprocal of the cost of the solution considered for the deposit. For
more details on the pheromone initialization and the use of occasional pheromone
trail reinitializations, we refer the reader to Stützle and Hoos [42].

8.2.5 Ant Colony System

Ant Colony System (ACS) [10] differs in several ways from AS and MMAS. ACS
uses the pseudorandom proportional rule in the solution construction: with a prob-
ability q0 the next city to visit is chosen as

j = argmax
h∈Nk

{τih ·ηβ
ih}, (8.6)

196 Stützle, López-Ibáñez, Pellegrini, Maur, Montes de Oca, Birattari, and Dorigo

that is, the most attractive edge is selected greedily with fixed probability. With
probability 1−q0, the AS random proportional rule defined by Equation 8.1 is used.
In ACS, the parameter α is fixed to 1, and, therefore, it is often omitted.

The pheromone deposit of ACS modifies only the pheromone values of edges
from one solution. As in MMAS, this solution is either the iteration-best or the best-
so-far solution. The ACS pheromone update formula is

τi j ←

⎧
⎨

⎩

(1−ρ) · τi j +ρ ·Δτi j if (i, j) is part of the best solution sbest,

τi j otherwise,
(8.7)

with Δτi j = F(sbest).
A local pheromone update rule is applied during the solution construction of the

ants. Each time an ant traverses an edge (i, j), τi j is modified as

τi j ← (1−ξ) · τi j +ξ · τ0, (8.8)

where ξ ∈ (0,1) is a parameter called pheromone decay coefficient, and τ0 is the
initial value of the pheromones. In ACS, τ0 is a very small constant with value 1/(n ·
Lnn), where Lnn is the length of a nearest neighbor tour. The local pheromone update
aims at avoiding stagnation: it decreases the pheromone value on the previously used
edges and makes them less attractive for other ants.

8.3 Overview of Parameter Adaptation Approaches

The dependency of the performance of metaheuristics on the settings of their pa-
rameters is well known. In fact, finding appropriate settings for an algorithm’s pa-
rameters is considered to be a nontrivial task and a significant amount of work has
been devoted to it. The approaches for tackling this task can roughly be divided into
offline versus online procedures.

Offline tuning has the goal of finding appropriate settings for an algorithm’s
parameters before the algorithm is actually deployed. Traditionally, offline tuning
has mostly been done in a trial-and-error fashion. This process is time-consuming,
human-intensive and error-prone, and it often leads to the uneven tuning of different
algorithms. Moreover, tuning by trial and error depends much on the intuition and
experience of the algorithm developer, and it is typically undocumented and there-
fore not reproducible. More recently, increasing effort has been devoted to methods
that allow for search-based, hands-off tuning of algorithm parameters. The study
of techniques for automatic algorithm configuration is currently a rather active re-
search area. Still, these methods typically come up with one specific parameter set-
ting which then remains the same while the algorithm solves a particular instance.

An alternative to offline tuning is online tuning. Typically, this consists of the
modification of an algorithm’s parameter settings while solving a problem instance.
A potential advantage of online modification of parameters is that algorithms may

8 Parameter Adaptation in Ant Colony Optimization 197

adapt better to the particular instance’s characteristics. When instances are relatively
heterogeneous, parameter settings that result in good performance on average across
all instances may lead to much worse results on some instances. Online parameter
adaptation may also be useful for achieving the best performance for a stage of
search. It is often possible to identify an algorithm’s explorative and exploitative
search phases, and good parameter settings in these phases may again be very dif-
ferent. Finally, if algorithms are applied in situations that are very different from the
context in which they have been developed or tuned offline, allowing parameters to
change online may increase an algorithm’s robustness.

There are different ways of modifying parameters during the run of an algo-
rithm. Many strategies have been widely studied in the context of EAs, and Eiben et
al. [17] give a possible classification of these strategies. Perhaps the simplest way is
to define the parameter variation rule before actually running the algorithm. In such
an approach, the problem is observed from an offline perspective: Static parame-
ters are substituted with (deterministic or randomized) functions depending on the
computational time or the number of algorithm iterations. Eiben et al. [17] call such
strategies deterministic parameter control; however, we prefer the term presched-
uled parameter variation, because the adjective “deterministic” does not correctly
characterize this way of controlling parameters, given that the schedule could also
allow randomized choices. Even if prescheduled parameter variation is an online
tuning method, it does not make the offline tuning problem disappear since also the
parameters that define the schedule need to be appropriately set.

An alternative is to use adaptive parameter settings, where the parameter modi-
fication scheme is defined as a function of some statistics on the algorithm behavior.
Various measures can be used for this online adaptation. They can be grouped de-
pending on whether they are based on absolute or relative evidence. In the first
case, the adaptation strategy monitors the occurrence of some events during the
run, for example, some fixed threshold of the distance between the solutions vis-
ited. Surpassing the threshold then triggers a set of rules for parameter variation. In
the second case, the adaptation strategy considers the relative difference between
the performance achieved with different parameter settings, and adapts the parame-
ter values to resemble the most successful ones. For parameter adaptation to work,
some additional decisions need to be made beyond the ones strictly related to the
implementation of the algorithm. In particular, the equations that describe the pa-
rameter update need to be defined a priori and it is hoped that the mechanisms used
are very robust with respect to their definitions.

A further possibility that has been the object of studies consists of having the pa-
rameters modified at run time by the algorithm itself. Specifically, dimensions that
represent parameters of exploration strategies are added to the search space of the
problem. The optimization process is then executed in this new space. Eiben et al.
[17] name this approach self-adaptation. Taking the notion of self-adaptation a step
further, we call search-based adaptation strategies that use a search algorithm differ-
ent from the underlying algorithm for parameter adaptation. This class of strategies
includes techniques such as local search and EAs for adapting the parameters of
ACO algorithms.

198 Stützle, López-Ibáñez, Pellegrini, Maur, Montes de Oca, Birattari, and Dorigo

Table 8.1: Schematic description of the literature on adaptive ACO. Some of the arti-
cles propose general adaptation strategies that could be used for several parameters.
Here we only indicate the parameters that have been adapted experimentally

Authors Adaptation strategy ACO variant Parameters

Merkle and Middendorf [34] pre-scheduled variant of AS β
Merkle et al. [35] pre-scheduled variant of AS β , ρ
Meyer [36] pre-scheduled AS α
Randall and Montgomery [40] adaptive ACS candidate set
Chusanapiputt et al. [6] adaptive AS α , β
Li and Li [28] adaptive new variant α , β
Hao et al. [24] adaptive ACS ρ
Kovářı́k and Skrbek [27] adaptive variant of MMAS β
Li et al. [29] adaptive variant of ACS q0, pheromone update
Cai et al. [5] adaptive ACS ρ
Randall [39] self-adaptation ACS β , ρ , q0, ξ
Martens et al. [32] self-adaptation MMAS α , β
Förster et al. [19] self-adaptation new variant pheromone update
Khichane et al. [26] self-adaptation MMAS α , β
Pilat and White [38] search-based adaptation ACS β , ξ , q0
Gaertner and Clark [20] search-based adaptation AS–ACS combination β , ρ , q0
Hao et al. [23] search-based adaptation variant of ACS β , ρ , q0
Garro et al. [22] search-based adaptation variant of ACS algorithm specific
Ling and Luo [30] search-based adaptation variant of ACS α , ρ , Q
Amir et al. [1] search-based adaptation ACS β , q0
Anghinolfi et al. [2] search-based adaptation variant of ACS β , q0
Melo et al. [33] search-based adaptation multi-colony ACS α , β , ρ , q0

8.4 Parameter Adaptation in ACO

The study of the impact of various parameters on the behavior of ACO algorithms
has been an important subject since the first articles [12, 13]. We schematically sum-
marize in Table 8.1 the main approaches that have been used in the ACO literature
to adapt parameter values, following roughly the classes defined by Eiben et al. [17].
This summary shows that the most frequently chosen parameters for adaptation are
α , β , q0 (in the case of ACS), and those that control the pheromone update. We
describe these approaches in the following sections.

8.4.1 Prescheduled Variation of Parameter Settings

There is surprisingly little work on prescheduled parameter variation for ACO algo-
rithms. Merkle and Middendorf [34] describe a contribution that considers an ACO
algorithm for the resource-constrained project scheduling problem. Its authors pro-
pose decreasing the value of the parameter β linearly over the run of an algorithm
from an initial value of 2 to 0. In a subsequent study, Merkle et al. [35] consider the
same problem and its authors propose modifying the parameter β and the evapora-

8 Parameter Adaptation in Ant Colony Optimization 199

tion rate ρ . For β they propose a schedule as described before. For ρ , they propose
starting with a small value to increase the initial exploration of the search space, and
later setting the evaporation rate to a high value for an intensive search around the
best solutions found by the algorithm.

Meyer [36] proposes a variant of AS called α-annealing. The idea at the basis of
its author’s work is to change the value of α according to some annealing schedule.
Increasing α slowly throughout the search can keep diversity in the beginning and
gradually increase the selective pressure to cover better regions of the search space
in the later phases.

8.4.2 Adaptive Approaches

Many of the approaches proposed in the literature can be classified as adaptive. In
these approaches, some parameters are modified according to some rules that take
into account the search behavior of the ACO algorithm. The average λ -branching
factor [21] is one of the first proposed measures of ACO behavior. Other measures
include entropy-based measures for the pheromone, dispersion of solutions gen-
erated by the algorithm, or simply the quality of the solutions generated [7, 37].
Favaretto et al. [18] propose a technique for measuring the effect of parameter vari-
ation on the exploration performed; this technique may also serve as an indicator for
defining parameter adaptation strategies.

In an early discussion of the usefulness of parameter adaptation in ACO algo-
rithms, Merkle and Middendorf [34] propose a decomposition of the search into
different phases to allow for the development of parameter adaptation strategies.
Several strategies have been proposed later and we divide these in two groups: adap-
tations based on the dispersion of the pheromone trails, and adaptations based on
the quality of solutions. Within the first group, Li and Li [28] introduce an ACO
algorithm that varies the parameters α and β over time. Their parameter adapta-
tion strategy considers a measure of the entropy on the action choice probabilities
of the ants during solution construction and they aim at obtaining a schedule for
α and β . During the early stage of the search, the value of α is small enough
to allow extensive exploration of the search space; the value of α increases over
time to improve the local search ability of the algorithm. They suggest the opposite
schedule for β . Li et al. [29] propose a variant of ACS that uses a “cloud-based
fuzzy strategy” for choosing the solution to be used in the global pheromone up-
date. The main idea is that, as the pheromones get more concentrated around a sin-
gle solution, tours other than the best-so-far one have a good chance of depositing
pheromone. Additionally, they adapt the parameter q0 with the goal of decreasing
it as soon as the pheromone trails concentrate on very few edges. Chusanapiputt
et al. [6] propose a variation of AS for dealing with the unit commitment prob-
lem. Three of the algorithm’s parameters are adapted based on pheromone disper-
sion.

200 Stützle, López-Ibáñez, Pellegrini, Maur, Montes de Oca, Birattari, and Dorigo

In a second group of papers, the driver of adaptation is the quality of the so-
lutions generated. Hao et al. [24] and Cai et al. [5] propose a variant of ACS for
the TSP. In their implementation, a different value of the parameter ρ is associ-
ated with each ant depending on the quality of its solution. This mechanism aims
at having high-quality solutions contribute more pheromone than low-quality ones.
Amir et al. [1] add a fuzzy logic controller module to the ACS algorithm for the
TSP for adapting the value of β and q0. The adaptive strategy uses two perfor-
mance measures: the difference between the optimal solution (or the best known
solution) and the best one found and the variance of the solutions visited by a
population of ants. Kovářı́k and Skrbek [27] describe an approach that divides the
ant colony into groups of ants using different parameter settings. They adapt the
number of ants in each of the groups depending on the improvement of the solu-
tion quality obtained by each group; however, they do not give all details of the
adaptation strategy. An analysis of the experimental results of adapting the val-
ues of β indicates that better initial performance is obtained with high values of
β while towards the end of the run low values of β are preferable. Randall and
Montgomery [40] apply an adaptation mechanism to an ACS algorithm that uses
a candidate set strategy as a speedup procedure. At each step, the component to
be added to the partial solution under construction is chosen from the ones belong-
ing to such a set. The composition of the set is modified throughout the run. Ele-
ments that give low probability values are eliminated temporarily from the search
process (they become tabu). After a number of iterations, they are added again to
the candidate set. The threshold for establishing which elements are tabu is varied
throughout the search process, depending on the quality of solutions being pro-
duced.

8.4.3 Search-Based Parameter Adaptation

Various adaptive ACO strategies fall into the category of self-adaptive strategies
[17], where an algorithm tunes itself by integrating its parameters into its search
task. We first present strategies that are “purely self-adaptive” in the original mean-
ing used by Eiben et al. [17]. Later, we discuss approaches that use other search
algorithms than ACO for adapting parameters. Given that these strategies are search-
based, most of the approaches discussed in the following use as feedback the quality
of the solutions generated.

8.4.3.1 Pure Self-Adaptive Approaches

The first self-adaptive approach to ACO is by Randall [39]. He suggests discretiz-
ing the parameter range and associating with each resulting value of a parameter a
pheromone trail that gives the desirability of choosing it. In his approach, each ant
adapts its own parameter settings and chooses them at each iteration before solution

8 Parameter Adaptation in Ant Colony Optimization 201

construction. This mechanism is tested by adapting the parameters β , q0, ρ , and ξ
for ACS applied to the TSP and the quadratic assignment problem. The comparison
of the results to the default parameter settings is somehow inconclusive.

Martens et al. [32] propose a self-adaptive implementation of MMAS applied
to the generation of decision rule-based classifiers. In their AntMiner+ algorithm,
ants choose suitable values for the parameters α and β . This is done by introducing
for each parameter a new vertex group in the construction graph. The values of α
and β are limited to integers between 1 and 3. Unlike in the previous paper, here
parameters are treated as interdependent.

Förster et al. [19] apply the same idea to an ACO approach for a multi-objective
problem. The parameters adapted are specific to the algorithm proposed, but they
are mostly related to pheromone deposit. As in Randall [39], the dependence among
parameters is neglected, that is, no new nodes are added to the construction graph. A
separate pheromone matrix is recorded, each column representing a parameter to be
adapted. Before starting the solution construction, each ant selects probabilistically
its own parameter settings based on the pheromone matrix.

Khichane et al. [26] study a self-adaptive mechanism to tune the parameters α
and β of their implementation of MMAS and apply it to constraint satisfaction prob-
lems. However, differently from the previous works, they do not define parameter
settings at the level of an individual ant. For each iteration one common param-
eter setting for the whole ant colony is defined. The two parameters are consid-
ered independent of each other. The authors propose two variants of the parameter
adaptation mechanism. In the first one, called global parameter learning ant-solver
(GPL-Ant-solver), the colony uses the same parameter setting during the solution
construction of each ant. In the second one, called distributed parameter learning
ant-solver (DPL-Ant-solver), at each step of the solution construction the colony
chooses new values for α and β ; hence, in this case the pheromones that encode
specific parameter settings refer to the desirability of choosing a specific parame-
ter value for a specific construction step. In an experimental evaluation of the two
variants, both are shown to reach similar performance levels. A comparison with an
offline tuned version of their ant-solver shows that for some instances the adaptive
version performs better while for others the opposite is true.

8.4.3.2 Other Search Algorithms for Adapting Parameters

Pilat and White [38] test two ways of using an EA to adjust parameters of an ACS
algorithm; one of them has to do online tuning. Their approach to online tuning
uses an EA to determine, at each ACS iteration, the parameter settings of four
ants before constructing solutions. The EA in turn uses the constructed solutions
to further evolve a set of good parameter settings. The authors choose three param-
eters for adaptation, namely, β , q0, and ξ . Their results are somewhat inconclusive.
This approach is similar to the mechanism used in an earlier paper by White et al.
[43], where the authors evolve the parameters α and β in an ACO algorithm for a
telecommunications routing problem. As an alternative to the online tuning of ACO

202 Stützle, López-Ibáñez, Pellegrini, Maur, Montes de Oca, Birattari, and Dorigo

parameters by an EA, Pilat and White [38] explore the use of an EA as an offline
tuning mechanism, analogously to Botee and Bonabeau [4].

Gaertner and Clark [20] propose a similar adaptive approach. In their work, ev-
ery ant is initialized with a random parameter combination, where the parameter
values are chosen from a predefined range. Over time, the entire population of ants
evolves, breeding ants with parameter combinations which find improved solutions.
In their experiments, the authors consider an algorithm based on a combination
of AS and ACS for the TSP. They test their approach on three parameters: β , ρ
and q0.

Hao et al. [23] propose a variant of ACS in which each ant is characterized by its
own parameter setting. The usual random-proportional rule is applied for selecting
subsequent moves. After each iteration, the parameter configurations are modified
using a particle swarm optimization (PSO) approach. Three parameters are adapted
throughout the algorithm’s run, namely β , ρ and q0. If the PSO mechanism assigns
a value outside a predefined range to a parameter, then the parameter is randomly
reinitialized. Following a similar idea, Ling and Luo [30] propose using an artificial
fish swarm algorithm for exploring the parameter space. Its authors also consider a
variant of ACS and vary the three parameters α , ρ and Q, a parameter that influences
the amount of pheromone an ant deposits. The main difference between this work
and the one of Hao et al. [23] is that Ling and Luo use the same parameter setting
for all ants.

Garro et al. [22] present an algorithm that evolves parameters using an EA. An
individual in the EA represents an ant characterized by specific parameter values.
The authors study a variant of ACS for automatically determining the path a robot
should follow from its initial position to its goal position. They adapt three parame-
ters of a newly proposed state transition rule.

Anghinolfi et al. [2] adapt two parameters using a local search in the param-
eter space. They define the neighborhood of the current parameter setting as all
possible combinations of parameter settings that can be obtained by increasing or
decreasing each parameter value by a fixed amount. Therefore, in the case of two
parameters, at each iteration five parameter configurations are tested: the incumbent
one and its four resulting neighbors. The test is done by assigning each parameter
combination to one of five equal-sized groups of ants; each group then uses its pa-
rameters to generate solutions. After each iteration, the incumbent parameter setting
is changed to the one that produced the iteration-best solution. In their experiments,
the authors adapt two parameters of a variant of ACS, namely β and q0. They ob-
serve better performance of the adaptive strategy than a tuned, fixed parameter set-
ting.

Finally, Melo et al. [33] propose a multi-colony ACS algorithm, where several
colonies of ants try to solve the same problem simultaneously. Each colony uses
different parameter settings for α , β , ρ and q0. Apart from exchanging solutions
among the colonies, their proposal includes a mutation operator that replaces the
parameter settings of the worst colony with the value of the same parameter in the
best colony modified by a small, uniformly random value.

8 Parameter Adaptation in Ant Colony Optimization 203

8.4.4 Conclusions from the Review

The review above shows that there is ongoing interest in parameter adaptation in the
ACO literature. However, we also observe that several of the contributions apply
adaptive techniques without prior in-depth understanding of the effect of individ-
ual parameters. Without such an understanding, decisions about which parameters
to adapt and how to adapt them are mostly arbitrary. In particular, we did not find
in our review any systematic study of the effect of different parameter settings on
the anytime behavior of ACO algorithms. It is our intuition that such an analysis can
inform decisions not only about which parameters may be worth varying during run-
time, but also about how to perform such variations. Moreover, the anytime behavior
of fixed parameter settings provides a baseline for evaluating the performance of pa-
rameter adaptations. In the following sections, we first provide a systematic study of
the anytime behavior of ACO algorithms, and we use the knowledge acquired from
it to design successful schemes for prescheduled parameter variation.

8.5 Experimental Investigation of Fixed Parameter Settings

In this section, we examine the effect that various parameters have on the perfor-
mance of ACS and MMAS. In particular, we are interested in the development of
the best-so-far solution over time when varying one parameter at a time. Our goal
is to identify which parameter settings produce the best results at any moment dur-
ing the run of the algorithm. Clearly, a parameter setting that produces very good
solutions during the initial stages of a run but leads to much worse results later is
an interesting candidate for having its settings varied online. In other words, we
are interested in the anytime behavior [44] of specific parameter settings to clearly
identify opportunities for the adaptation of parameter values over the computation
period.

Our experimental analysis is based on the publicly available ACOTSP soft-
ware [41], which we compiled with gcc, version 3.4. Experiments are carried out
on a cluster of Intel Xeon™ E5410 quad-core processors running at 2.33GHz with 6
MB L2 Cache and 8 GB RAM under Rocks Cluster GNU/Linux. Due to the sequen-
tial implementation of the code, only one core is used for running the executable.

We test two ACO algorithms, ACS and MMAS. Table 8.2 gives the default values
for the parameters under study. In each experiment where one parameter is varied,
the others are kept fixed at their default values. For the remaining parameters, that
is, τ0, ξ (for ACS), the choice of iteration-best or best-so-far update, and so on, we
use the default values given by Dorigo and Stützle [11], which are also the default
values of the ACOTSP package. We test the algorithms with and without the use
of the first-improvement 2-opt local search provided by the ACOTSP package. For
the experiments, TSP instances are randomly generated using the instance generator
provided for the 8th DIMACS challenge on the TSP; in particular, points are gen-
erated uniformly at random in a square of side length 1,000,000. When using ACO

204 Stützle, López-Ibáñez, Pellegrini, Maur, Montes de Oca, Birattari, and Dorigo

Table 8.2: Default settings of the parameters under study for MMAS and ACS with-
out local search and with 2-opt local search

Algorithm β ρ m q0

ACS 2 0.1 10 0.9
ACS + 2-opt 2 0.1 10 0.98
MMAS 2 0.02 n 0.00
MMAS + 2-opt 2 0.2 25 0.00

algorithms without local search, the tests are done on instances of size 100, 200,
400 and 800; because of the much higher performance of the ACO algorithms when
local search is used, we use with local search larger instances of size 1,500, 3,000
and 6,000 to minimize possible floor effects. The presentation of the experimental
results is based on the development of the relative deviation of the best solution
found by an ACO algorithm from the optimal solution (or the best known solution
for the instance of size 6,000). Each of the curves of the solution quality over time,
or SQT curves [25], is the average of 25 executions of each parameter setting. Since
we only present plots, we give for each setting results on only one instance. How-
ever, the trends are the same on all instances and, hence, the plots are representative
of the general results.

8.5.1 Fixed Parameter Settings for Ant Colony System

In the case of ACS, we study the effect of β , which regulates the influence of the
heuristic information; m, the number of ants; ρ , the evaporation factor; and q0, the
probability of making a deterministic choice in Equation 8.6. Here, we present SQT
curves only for the case where ants’ solutions are improved by a local search for
the instance of size 3,000. The final conclusions concerning the usefulness of the
variation of parameters at run-time were the same on the other instances and when
using ACS without local search. Figures 8.2 to 8.5 report the results on parameters
β , m, ρ , and q0, respectively.

The main overall conclusion we obtain from these results is that very often there
is a single parameter setting that performs best during most of the available run-
time. Hence, there does not appear to be a clear benefit to varying the parameter
settings at run-time. This conclusion remains the same if ACS is run without lo-
cal search; the main difference is that the performance is more variable and more
dependent on specific parameter values. In more detail, the observations and con-
clusions that arise for the single parameters from the presented results are the fol-
lowing.

β , Figure 8.2: Medium range values of β equal to 2 or 5 produce the best re-
sults during most of the runtime. Smaller values of β are initially worse but,

8 Parameter Adaptation in Ant Colony Optimization 205

after enough computation time, eventually match the results of the default
value. Much larger values (e.g., β = 10) are quickly overshadowed by smaller
ones.

m, Figure 8.3: The default value of ten ants results in very good anytime perfor-
mance. Interestingly, very small values (notably m = 1) make the algorithm
perform slightly worse during the whole runtime, whereas much larger values
(m = 100) lead to much worse results. The latter effect is probably due to too
much diversification because of the application of the local pheromone update
rule in ACS.

ρ , Figure 8.4: Surprisingly, the differences among different settings of ρ are almost
imperceptible. Without local search (not shown here), large ρ values produce
faster convergence. However, after a short time small values close to the default
(ρ = 0.1) produce progressively better results.

q0, Figure 8.5: As suggested in the literature, good values of q0 tend to be close
to 1. In extreme cases, a value of 1 quickly leads to search stagnation, while
values smaller than 0.75 produce very slow convergence towards good solu-
tions. Similar results are obtained when local search is disabled.

Fig. 8.2: ACS with various values of β Fig. 8.3: ACS with various numbers of
ants (m)

Fig. 8.4: ACS with various values of ρ Fig. 8.5: ACS with various values of q0

206 Stützle, López-Ibáñez, Pellegrini, Maur, Montes de Oca, Birattari, and Dorigo

Fig. 8.6: MMAS with various fixed values of β ; left plot without local search and
right plot with local search

8.5.2 Fixed Parameter Settings for MAX–MIN Ant System

We now study the impact of the same parameters, β , m, ρ , and q0, on the anytime
behavior of MMAS. For MMAS, the behavior is more interesting from a parameter
adaptation point of view. We therefore present results for the cases with and with-
out local search. Results without local search are for one instance with 400 nodes,
whereas with local search, they are for an instance with 3,000 nodes.

β , Figure 8.6: Without local search (upper part of Figure 8.6), MMAS requires rel-
atively large values of β , which produce a significant advantage, especially dur-
ing the initial part of the run, over the default setting of β = 2. While results
with the default setting eventually match the results obtained with higher set-
tings, values of β less than 2 lead to quite poor performance. With local search,
the differences are much smaller and a setting of β = 10 is quickly overshad-
owed by lower ones. This suggests that starting with a high value of β may
enhance the performance of MMAS at the beginning of the run, but a value
close to the default may produce better results for larger computation times.

m, Figure 8.7: With and without local search, the number of ants shows a clear
trade-off between early and late performance. In particular, a low number of
ants (for example, m = 5) produces the best results during the early stages of
the algorithm run. However, a higher number of ants (for example, m = 100)
obtains much better results towards the end of the run. Without local search,
the fast initial progress with few ants soon levels off and apparently leads to
search stagnation. In this case, the default setting of m = 400 appears to be
already too high, and it slows down the algorithm compared to using 100 ants
without improving the final result. With local search, the SQT curves cross for
the different parameter settings and those with few ants (m = 1 and m = 5)
result in worse final solution quality. In fact, a larger number of ants (m ≥ 25)
pays off if the algorithm is allowed to run for enough time. This result suggests
that increasing the number of ants from an initially low value may lead to better
anytime behavior of MMAS.

8 Parameter Adaptation in Ant Colony Optimization 207

Fig. 8.7: MMAS with various fixed numbers of ants (m); left plot without local
search and right plot with local search

Fig. 8.8: MMAS with various fixed values of ρ; left plot without local search and
right plot with local search

ρ , Figure 8.8: There is some degree of trade-off between large and small values of
ρ . Large values (for example, ρ = 0.6) converge faster than the default values
(ρ = 0.02 without local search, ρ = 0.2 with local search). Nevertheless, low
values of ρ are able to achieve the same performance, and, given sufficient time,
produce the best final results. This effect is most noticeable in the case without
local search. Hence, starting with a high evaporation factor and then reducing it
over time to its default value appears to be a promising strategy.

q0, Figure 8.9: Finally, we test the use of the pseudorandom proportional rule of
ACS (Equation 8.6) in MMAS. Here, we study the effect of different values
of q0 as we previously did for ACS. In this case, a clear trade-off is observed:
high values of q0 perform best for a short runtime, whereas low values of q0

(q0 = 0 effectively reverts to the standard MMAS) generally result in better
final performance.

Summarizing the above experiments, in MMAS a strong trade-off exists for var-
ious parameters between the performance of fixed settings for short and long com-
putation times, making the behavior of MMAS very different from that of ACS.
In particular, β , m and q0 seem good candidates for the use of variable settings to
achieve good anytime performance. Therefore, in the next section, we examine a
few simple ways of varying the parameter settings of MMAS during the run.

208 Stützle, López-Ibáñez, Pellegrini, Maur, Montes de Oca, Birattari, and Dorigo

Fig. 8.9: MMAS using the pseudorandom proportional rule with various fixed values
of q0; left plot without local search and right plot with local search

8.6 Prescheduled Parameter Variation for MMAS

Given that MMAS was a clear candidate for the varying of parameters during the
computation period, we examine various schedules for changing the parameter set-
tings. In this section, we give exemplary results for prescheduled parameter varia-
tion. In particular, we show results concerning the adaptation of the parameters β ,
m, and q0. These illustrate the types of improvement in the anytime behavior of
MMAS that may be obtained. We do not consider varying the evaporation factor, ρ ,
since we did not find schedules that significantly improve performance over a fixed,
high setting (such as ρ = 0.6).

First, we study the variation of β . We tested schedules that decrease the value of
β linearly with the iteration counter as well as schedules where a switch from a high
value to a low value occurs at a fixed iteration number. The latter type of schedule
resulted in better anytime performance and, hence, we focus on these here. The pro-
cedure of these schedules is to start with the high value of β = 20, which was shown
to yield good performance at the start of the run, and to later set it directly to a lower
value close to the default value. Figure 8.10 shows the results with local search for
three scenarios that differ in the number of iterations after which β is changed, from
20 to 3; in particular, we consider 50 (aβ 1), 100 (aβ 2) and 200 (aβ 3) iterations. The
schedule aβ 1 obtained the best SQT curve, and delaying the change of β produces
worse results. In the case without local search (not shown here), delaying the switch
from the high to the low value of β showed some improvement. Nonetheless, for
simplicity, we choose strategy aβ 1 for further comparison. Figure 8.11 compares
the use of strategy aβ 1 to the use of the default value and a large value (β = 20)
of β without (left) and with (right) local search. In both cases, the prescheduled pa-
rameter variation is able to combine the best results of both fixed settings, achieving
a better anytime performance.

In the case of the number of ants, m, the strategies studied here start with a
single ant and increase the number of ants as the algorithm progresses. Figure 8.12
shows that there is progressive degradation of the quality of the results as the rate
at which ants are added increases. The best results are obtained with the lowest rate

8 Parameter Adaptation in Ant Colony Optimization 209

Fig. 8.10: MMAS, scheduled variation of parameter β ; the three strategies aβ 1 to
aβ 3 start each with β equal to 20 and set β to 3 after 50 (aβ 1), 100 (aβ 2), and 200
(aβ 3) iterations, respectively

Fig. 8.11: MMAS, comparison of fixed and varying parameter settings for β ; left
side: case without local search; right side: case with local search. The adaptation
strategy used is aβ 1 (see caption of Figure 8.10 for details)

(am 1, which adds one ant after every ten iterations) for both cases, with and without
local search (only the local search case is shown for conciseness). The comparison
between the fixed and prescheduled settings (Figure 8.13) shows a clear benefit
with the use of prescheduled variation of m, which matches the good performance
obtained for short runtimes by only one ant and for long runtimes by a large number
of ants.

For varying q0 for MMAS, we tested strategies that start with a high value of
q0 = 0.99 and decrease it until they reach a setting of q0 equal to 0. Figure 8.14
shows four strategies that decrease q0 at different rates, namely, by 0.001 every
15 iterations (aq0 1), by 0.001 every two iterations (aq0 2), by 0.005 every itera-
tion (aq0 3), and by 0.02 every iteration (aq0 4). Without local search, the strategies
that decrease q0 more slowly result in faster convergence to good solutions (not
shown here). However, with local search there is a trade-off between the slowest
and the fastest decrease of q0, with the former being better at the start of the algo-
rithm, and the latter performing best for higher computation times. This suggests
that more sophisticated strategies may be able to further enhance the performance
of the algorithm. Nevertheless, the comparison of the schedule aq0 2 with fixed pa-

210 Stützle, López-Ibáñez, Pellegrini, Maur, Montes de Oca, Birattari, and Dorigo

Fig. 8.12: MMAS, scheduled variation of the number of ants (m). All strategies am

1 to am 5 start with one ant and iteratively increase the number of ants. In particular,
am 1 adds one ant every ten iterations, am 2 adds one ant every second iteration, am

3 adds one ant each iteration, am 4 adds two ants each iteration, and am 5 adds five
ants each iteration

Fig. 8.13: MMAS, comparison of fixed and varying parameter settings for param-
eter m; left side: case without local search; right side: case with local search. The
adaptation strategy used is am1 (see caption of Figure 8.12 for details)

rameter settings shows that prescheduled parameter variation is able to match the
best results of both fixed parameter settings during the execution time of the algo-
rithm.

A general observation from our study of prescheduled parameter variation is
that considerable improvements of the anytime behavior of MMAS are possible
without their substantially affecting the final performance achieved by the algo-
rithm. In some additional experiments, we verified that the same conclusion is also
true for the parameter α , which weights the influence of the pheromone trails.
In fact, for similar simple schedules as proposed previously, we could observe
strong improvements in the anytime behavior compared to performance with fixed
settings for α . Further studies need to verify whether the same observations on
the usefulness of simple prescheduled parameter variations hold for other prob-
lems.

8 Parameter Adaptation in Ant Colony Optimization 211

Fig. 8.14: MMAS, scheduled variation of the parameter q0. All strategies (aq0 1 to
aq0 4) start at q0 = 0.99 and decrease q0 to 0. In particular, aq0 1 decreases q0 by
0.001 every 15 iterations, aq0 2 by 0.001 every 2 iterations, aq0 3 by 0.005 every
iteration, and aq0 4 by 0.02 every iteration

Fig. 8.15: MMAS, comparison of fixed and varying parameter settings for param-
eter q0; left side: case without local search; right side: case with local search. The
adaptation strategy used is aq0 2 (see caption of Figure 8.14 for details)

8.7 Conclusions and Future Work

In this chapter, we have given an overview of the literature on parameter adaptation
in ACO algorithms. A variety of approaches have been proposed but the overall
impression from the research results is that further efforts are required to determine
the most suitable strategies for parameter adaptation and their role and importance in
ACO algorithms that perform at the state-of-the-art level. Only few of the presented
publications have shown clear computational advantages, for example, in the form
of better average solution quality reachable in highly effective ACO algorithms.

In the second part of the chapter, we have given an experimental analysis of the
impact that specific parameters have on the anytime behavior of ACO algorithms.
For the application of ACS and MMAS to the TSP we could determine very dif-
ferent behavior of these algorithms. While the anytime behavior of ACS was rather
insensitive to parameter variation, the analysis of the anytime behavior of MMAS
has identified clear opportunities for prescheduled parameter variation. We tested
a number of fairly straightforward schedules of the values for the parameters β , m,

212 Stützle, López-Ibáñez, Pellegrini, Maur, Montes de Oca, Birattari, and Dorigo

and q0 in MMAS. As a result, we could observe that the anytime behavior of MMAS
can be greatly improved without significant loss in the final solution quality.

Our computational study can clearly be extended in different directions. An in-
teresting extension is the study of interactions between different parameter settings.
Such a study may hint at combined variations of at least two parameters that can
further improve the anytime behavior of MMAS or even its final performance. Fi-
nally, it is certainly worthwhile studying in more detail the contribution of adaptive
strategies that take into account the internal state of the algorithm in order to adapt
to different classes of instances. For their study, it is probably preferable to consider
problems where the algorithm parameters depend more strongly on specific instance
classes than they do in the TSP.

For our main conclusion we can state that parameter adaptation is a relatively
large field that is receiving strong attention by the research community. Many tech-
niques have already been proposed in the context of other heuristic methods, but
their adoption in ACO algorithms still opens up a number of research opportunities
with potentially significant impact.

Acknowledgements This work was supported by the META-X project, an Action de Recherche
Concertée funded by the Scientific Research Directorate of the French Community of Belgium.
Mauro Birattari, Thomas Stützle and Marco Dorigo acknowledge support from the Belgian F.R.S.-
FNRS, of which they are Research Associates and Research Director, respectively. The authors also
acknowledge support from the FRFC project “Méthodes de recherche hybrides pour la résolution
de problèmes complexes”.

References

[1] Amir C., Badr A., Farag I.: A fuzzy logic controller for ant algorithms. Com-
puting and Information Systems 11(2):26–34 (2007)

[2] Anghinolfi D., Boccalatte A., Paolucci M., Vecchiola C.: Performance evalua-
tion of an adaptive ant colony optimization applied to single machine schedul-
ing. In: Li X., et al. (eds.) Simulated Evolution and Learning, 7th Interna-
tional Conference, SEAL 2008, Lecture Notes in Computer Science, vol. 5361,
Springer, Heidelberg, Germany, pp. 411–420 (2008)

[3] Battiti R., Brunato M., Mascia F.: Reactive Search and Intelligent Optimiza-
tion, Operations Research/Computer Science Interfaces, vol. 45. Springer,
New York, NY (2008)

[4] Botee H. M., Bonabeau E.: Evolving ant colony optimization. Advances in
Complex Systems 1:149–159 (1998)

[5] Cai Z., Huang H., Qin Y., Ma X.: Ant colony optimization based on adaptive
volatility rate of pheromone trail. International Journal of Communications,
Network and System Sciences 2(8):792–796 (2009)

[6] Chusanapiputt S., Nualhong D., Jantarang S., Phoomvuthisarn S.: Selective
self-adaptive approach to ant system for solving unit commitment problem.

8 Parameter Adaptation in Ant Colony Optimization 213

In: Cattolico M., et al. (eds.) GECCO 2006, ACM press, New York, NY, pp.
1729–1736 (2006)

[7] Colas S., Monmarché N., Gaucher P., Slimane M.: Artificial ants for the
optimization of virtual keyboard arrangement for disabled people. In: Mon-
marché N., et al. (eds.) Artificial Evolution - 8th International Conference,
Evolution Artificielle, EA 2007, Lecture Notes in Computer Science, vol.
4926, Springer, Heidelberg, Germany, pp. 87–99 (2008)

[8] Dorigo M.: Ant colony optimization. Scholarpedia 2(3):1461 (2007)
[9] Dorigo M., Di Caro G.: The Ant Colony Optimization meta-heuristic. In:

Corne D., Dorigo M., Glover F. (eds.) New Ideas in Optimization, McGraw
Hill, London, UK, pp. 11–32 (1999)

[10] Dorigo M., Gambardella L. M.: Ant Colony System: A cooperative learning
approach to the traveling salesman problem. IEEE Transactions on Evolution-
ary Computation 1(1):53–66 (1997)

[11] Dorigo M., Stützle T.: Ant Colony Optimization. MIT Press, Cambridge, MA
(2004)

[12] Dorigo M., Maniezzo V., Colorni A.: The Ant System: An autocatalytic opti-
mizing process. Tech. Rep. 91-016 Revised, Dipartimento di Elettronica, Po-
litecnico di Milano, Italy (1991)

[13] Dorigo M., Maniezzo V., Colorni A.: Ant System: Optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics
- Part B 26(1):29–41 (1996)

[14] Dorigo M., Di Caro G., Gambardella L. M.: Ant algorithms for discrete opti-
mization. Artificial Life 5(2):137–172 (1999)

[15] Dorigo M., Birattari M., Stützle T.: Ant colony optimization: Artificial ants
as a computational intelligence technique. IEEE Computational Intelligence
Magazine 1(4):28–39 (2006)

[16] Dorigo M., et al. (eds.): Ant Algorithms: Third International Workshop, ANTS
2002, Lecture Notes in Computer Science, vol. 2463. Springer, Heidelberg,
Germany (2002)

[17] Eiben A. E., Michalewicz Z., Schoenauer M., Smith J. E.: Parameter control
in evolutionary algorithms. In: [31], pp. 19–46 (2007)

[18] Favaretto D., Moretti E., Pellegrini P.: On the explorative behavior of MAX–
MIN Ant System. In: Stützle T., Birattari M., Hoos H. H. (eds.) Engineering
Stochastic Local Search Algorithms. Designing, Implementing and Analyzing
Effective Heuristics. SLS 2009, Lecture Notes in Computer Science, vol. 5752,
Springer, Heidelberg, Germany, pp. 115–119 (2009)

[19] Förster M., Bickel B., Hardung B., Kókai G.: Self-adaptive ant colony optimi-
sation applied to function allocation in vehicle networks. In: Thierens D., et al.
(eds.) GECCO’07: Proceedings of the 9th Annual Conference on Genetic and
Evolutionary Computation, ACM, New York, NY, pp. 1991–1998 (2007)

[20] Gaertner D., Clark K.: On optimal parameters for ant colony optimization al-
gorithms. In: Arabnia H. R., Joshua R. (eds.) Proceedings of the 2005 Inter-
national Conference on Artificial Intelligence, ICAI 2005, CSREA Press, pp.
83–89 (2005)

214 Stützle, López-Ibáñez, Pellegrini, Maur, Montes de Oca, Birattari, and Dorigo

[21] Gambardella L. M., Dorigo M.: Ant-Q: A reinforcement learning approach
to the traveling salesman problem. In: Prieditis A., Russell S. (eds.) Proceed-
ings of the Twelfth International Conference on Machine Learning (ML-95),
Morgan Kaufmann Publishers, Palo Alto, CA, pp. 252–260 (1995)

[22] Garro B. A., Sossa H., Vazquez R. A.: Evolving ant colony system for optimiz-
ing path planning in mobile robots. In: Electronics, Robotics and Automotive
Mechanics Conference, IEEE Computer Society, Los Alamitos, CA, pp. 444–
449 (2007)

[23] Hao Z., Cai R., Huang H.: An adaptive parameter control strategy for ACO.
In: Proceedings of the International Conference on Machine Learning and Cy-
bernetics, IEEE Press, pp. 203–206 (2006)

[24] Hao Z., Huang H., Qin Y., Cai R.: An ACO algorithm with adaptive volatil-
ity rate of pheromone trail. In: Shi Y., van Albada G. D., Dongarra J.,
Sloot P. M. A. (eds.) Computational Science – ICCS 2007, 7th International
Conference, Proceedings, Part IV, Lecture Notes in Computer Science, vol.
4490, Springer, Heidelberg, Germany, pp. 1167–1170 (2007)

[25] Hoos H. H., Stützle T.: Stochastic Local Search–Foundations and Applica-
tions. Morgan Kaufmann Publishers, San Francisco, CA (2005)

[26] Khichane M., Albert P., Solnon C.: An ACO-based reactive framework for
ant colony optimization: First experiments on constraint satisfaction problems.
In: Stützle T. (ed.) Learning and Intelligent Optimization, Third International
Conference, LION 3, Lecture Notes in Computer Science, vol. 5851, Springer,
Heidelberg, Germany, pp. 119–133 (2009)

[27] Kovářı́k O., Skrbek M.: Ant colony optimization with castes. In: Kurkova-
Pohlova V., Koutnik J. (eds.) ICANN’08: Proceedings of the 18th International
Conference on Artificial Neural Networks, Part I, Lecture Notes in Computer
Science, vol. 5163, Springer, Heidelberg, Germany, pp. 435–442 (2008)

[28] Li Y., Li W.: Adaptive ant colony optimization algorithm based on information
entropy: Foundation and application. Fundamenta Informaticae 77(3):229–
242 (2007)

[29] Li Z., Wang Y., Yu J., Zhang Y., Li X.: A novel cloud-based fuzzy self-adaptive
ant colony system. In: ICNC’08: Proceedings of the 2008 Fourth International
Conference on Natural Computation, IEEE Computer Society, Washington,
DC, vol. 7, pp. 460–465 (2008)

[30] Ling W., Luo H.: An adaptive parameter control strategy for ant colony op-
timization. In: CIS’07: Proceedings of the 2007 International Conference on
Computational Intelligence and Security, IEEE Computer Society, Washing-
ton, DC, pp. 142–146 (2007)

[31] Lobo F., Lima C. F., Michalewicz Z. (eds.): Parameter Setting in Evolutionary
Algorithms. Springer, Berlin, Germany (2007)

[32] Martens D., Backer M. D., Haesen R., Vanthienen J., Snoeck M., Baesens B.:
Classification with ant colony optimization. IEEE Transactions on Evolution-
ary Computation 11(5):651–665 (2007)

[33] Melo L., Pereira F., Costa E.: MC-ANT: A multi-colony ant algorithm. In:
Artificial Evolution - 9th International Conference, Evolution Artificielle, EA

8 Parameter Adaptation in Ant Colony Optimization 215

2009, Lecture Notes in Computer Science, vol. 5975, Springer, Heidelberg,
Germany, pp. 25–36 (2009)

[34] Merkle D., Middendorf M.: Prospects for dynamic algorithm control: Lessons
from the phase structure of ant scheduling algorithms. In: Heckendorn R. B.
(ed.) Proceedings of the 2000 Genetic and Evolutionary Computation Con-
ference - Workshop Program. Workshop “The Next Ten Years of Scheduling
Research”, Morgan Kaufmann Publishers, San Francisco, CA, pp. 121–126
(2001)

[35] Merkle D., Middendorf M., Schmeck H.: Ant colony optimization for
resource-constrained project scheduling. IEEE Transactions on Evolutionary
Computation 6(4):333–346 (2002)

[36] Meyer B.: Convergence control in ACO. In: Genetic and Evolutionary Com-
putation Conference (GECCO), Seattle, WA, late-breaking paper available on
CD (2004)

[37] Pellegrini P., Favaretto D., Moretti E.: Exploration in stochastic algorithms:
An application on MAX–MIN Ant System. In: Nature Inspired Cooperative
Strategies for Optimization (NICSO 2008), Studies in Computational Intelli-
gence, vol. 236, Springer, Berlin, Germany, pp. 1–13 (2009)

[38] Pilat M. L., White T.: Using genetic algorithms to optimize ACS-TSP. In: [16],
pp. 282–287 (2002)

[39] Randall M.: Near parameter free ant colony optimisation. In: Dorigo M.,
et al. (eds.) Ant Colony Optimization and Swarm Intelligence: 4th Interna-
tional Workshop, ANTS 2004, Lecture Notes in Computer Science, vol. 3172,
Springer, Heidelberg, Germany, pp. 374–381 (2004)

[40] Randall M., Montgomery J.: Candidate set strategies for ant colony optimisa-
tion. In: [16], pp. 243–249 (2002)

[41] Stützle T.: ACOTSP: A software package of various ant colony optimiza-
tion algorithms applied to the symmetric traveling salesman problem. URL
http://www.aco-metaheuristic.org/aco-code/ (2002)

[42] Stützle T., Hoos H. H.: MAX–MIN Ant System. Future Generation Computer
Systems 16(8):889–914 (2000)

[43] White T., Pagurek B., Oppacher F. Connection management using adaptive
mobile agents. In: Arabnia H. R. (ed.) Proceedings of the International Con-
ference on Parallel and Distributed Processing Techniques and Applications
(PDPTA’98), CSREA Press, pp. 802–809 (1998)

[44] Zilberstein S.: Using anytime algorithms in intelligent systems. AI Magazine
17(3):73–83 (1996)

[45] Zlochin M., Birattari M., Meuleau N., Dorigo M.: Model-based search for
combinatorial optimization: A critical survey. Annals of Operations Research
131(1–4):373–395 (2004)

http://www.aco-metaheuristic.org/aco-code/

	8 Parameter Adaptation in Ant Colony Optimization
	8.1 Introduction
	8.2 Ant Colony Optimization
	8.2.1 Ant Colony Optimization for the TSP
	8.2.2 ACO Variants
	8.2.3 Ant System
	8.2.4 MAX–MIN Ant System
	8.2.5 Ant Colony System

	8.3 Overview of Parameter Adaptation Approaches
	8.4 Parameter Adaptation in ACO
	8.4.1 Prescheduled Variation of Parameter Settings
	8.4.2 Adaptive Approaches
	8.4.3 Search-Based Parameter Adaptation
	8.4.3.1 Pure Self-Adaptive Approaches
	8.4.3.2 Other Search Algorithms for Adapting Parameters

	8.4.4 Conclusions from the Review

	8.5 Experimental Investigation of Fixed Parameter Settings
	8.5.1 Fixed Parameter Settings for Ant Colony System
	8.5.2 Fixed Parameter Settings for MAX–MIN Ant System

	8.6 Prescheduled Parameter Variation for MMAS
	8.7 Conclusions and Future Work
	References

