Exposing a Bias Toward Short-Length Numbers
in Grammatical Evolution

Marco A. Montes de Oca

IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
mmontes@ulb.ac.be

Abstract. Many automatically-synthesized programs have, like their
hand-made counterparts, numerical parameters that need to be set prop-
erly before they can show an acceptable performance. Hence, any ap-
proach to the automatic synthesis of programs needs the ability to tune
numerical parameters efficiently.

Grammatical Evolution (GE) is a promising grammar-based genetic pro-
gramming technique that synthesizes numbers by concatenating digits.
In this paper, we show that a naive application of this approach can lead
to a serious number length bias that in turn affects efficiency. The root of
the problem is the way the context-free grammar used by GE is defined.
A simple, yet effective, solution to this problem is proposed.

1 Introduction

Genetic Programming (GP) [1] has been used for the automatic synthesis of
computer programs and other kinds of systems. In many cases, a GP system
is required to find two equally important components: a system’s structure and
optimal (or near-optimal) values for numerical parameters. Although both com-
ponents determine the overall system’s performance, it is its structure that de-
termines the number and importance of numerical parameters [2]. Obviously,
tuning numerical variables effectively and efficiently is crucial in any GP ap-
proach and the topic has been the subject of active research [3], [4], [5].

Previous work on the ability of Grammatical Evolution (GE) [6], a grammar-
based GP technique, to synthesize numerical values has shown that a simple digit
concatenation approach is superior to the traditional expression-based one [7].
In this paper, a study on the efficiency with which this approach is able to
generate numerical parameters is presented. The study relies on the assumption
that a good structure (i.e., the number of numerical variables) has already been
found during evolution, so that the efficiency with which GE can tune numerical
variables can be studied in detail.

The main finding reported here is that the classical digit concatenation gram-
mar used by GE to generate numerical parameters induces a bias toward short-
length numbers. This bias can affect substantially the efficiency of the search
process which can hinder the applicability of GE as a whole. A simple, yet effec-
tive, solution to this problem is proposed. It consists of a grammar modification

that makes the distribution of lengths in the initial population more uniform,
effectively making the search for numbers of different lengths more efficient.

The paper is organized as follows. Section 2 describes the GE approach. A
brief summary of related work is presented in Section 3. Section 4 presents the
number length bias problem. Section 5 describes the experimental setup used to
evaluate both the magnitude of the problem and the benefits obtained with the
proposed solution. The paper is concluded in Section 6.

2 Grammatical Evolution

Grammatical Evolution (GE) [6] is a recent evolutionary computation technique
for the automatic synthesis of programs in an arbitrary language. At the core of
the approach is a grammar-based mapping process that transforms a number of
variable-length integer vectors into syntactically correct programs. The elements
of an integer vector are used to select a production rule from a grammar defined
in a Backus-Naur form. By expanding production rules in this way, a complete
program can be generated.

The components of a solution vector are normally integers in the range
[0,255]. Their values are used to select a production rule! from the nonterminal
symbol that is being expanded. The selected production rule is determined by

selected rule = (integer value) mod (No. of rules for current nonterminal), (1)

where mod denotes the modulus operator.

As an example of the operation of GE, consider the problem of performing
symbolic regression. A grammar G = {N,T,S, P} for this problem is shown
below (taken from [8]). N is the set of nonterminal symbols, T is the set of
terminal symbols, S is the start symbol, and P is the set of production rules.

N ={<expr >, < op>,< func>,<var >}
T ={sin, cos, exp, log, +, —, /, %, 2,1.0, (,)}

S =<expr>
P={
< expr >— < expr > < op > < expr >
| (< expr >)
| < func > (< expr >)
| <wvar >
<op>— + | —|/]*

< func >— sin | cos | exp | log
<wvar >—1.0|z

}

! Rules are numbered starting from 0.

Suppose that the solution vector we want to map is
[6,25,120,58,43,62,126, 87,67,23,11,2] .

From the start symbol < exzpr >, there are 4 rules to choose from. Since the
first element of the solution vector is 6, the selected rule is rule number 6 mod 4 =
2. After this first expansion, the solution takes the form < func > (< expr >).
The mapping process continues by selecting a production rule from the leftmost
nonterminal symbol, which in our example is < func >. In the next expansion
step, the selected rule is rule number 25mod4 = 1, so the solution takes the
form cos(< expr >). If we continue with this process the final solution would be
cos(log(exp(x))/1.0).

The mapping process is repeated until a string with no nonterminal symbols
is generated or until no more elements in the vector remain to be mapped. If
after processing all the elements of the solution vector a valid solution is still
incomplete, there are two possible actions to take. The first one is called wrapping
and consists in reinterpreting the solution vector again starting from the first
element until a valid solution is generated or a maximum number of wrappings
occur. Although the elements of the solution vector are reused, their effect on
the generated string depends on the nonterminal symbol that is being rewritten.
The second option is to discard the solution and assigning it the lowest fitness
value.

By the way GE is designed, it is possible to separate the search and solution
spaces. This has the advantage of decoupling the way search is done from the
way solutions are constructed. Consequently, GE does not necessarily rely on
genetic algorithms to work.

GE has been used in fields such as financing [9], combinatorial optimiza-
tion [10] and machine learning [11]. In these and other cases a common problem
stands out: synthesizing numerical values effectively and efficiently. Previous
work on this direction is presented below.

3 Constant Creation by Grammatical Evolution

There have been some previous studies on the ability of GE to synthesize num-
bers. O'Neill et al. [7] presented a comparison between the traditional expression-
based approach used in tree-based Genetic Programming with a digit concate-
nation one. Based on experimental evidence, they conclude that the digit con-
catenation approach is superior to the expression-based one on the problem of
synthesizing numbers. In Dempsey et al. [12], a comparison between the digit
concatenation approach and another one using random constants was performed
on problems similar to those used by O’Neill et al. [7]. No conclusive evidence was
found on the superiority of any of these approaches. Recently, a more detailed
study was undertaken by Dempsey et al. [13] in which they finally conclude that
the digit concatenation approach is superior to the random constants approach
on problems requiring the synthesis of static constants. The random constants

approach proved to be better suited for dynamic problems (in which the target
number changes over time).

Dempsey et al. [14] explored a meta-grammar approach to constant creation.
The grammars that were used to create the potential solutions were evolved
along with the solutions themselves. In this work, the effects of using different
grammars were indirectly studied but no grammar analysis was conducted in
detail and therefore, no grammar-construction guidelines were derived. Dempsey
and colleagues found that the meta-grammar approach offered some advantages
over other approaches on dynamic problems.

In this paper, we focus on the efficiency of the digit concatenation approach. It
uses a grammar that includes the basic building blocks for number construction.
For example, a grammar for synthesizing unsigned integer numbers is presented
below.

Digit Concatenation Grammar

N ={< number >, < digitlist >, < digit >}
T ={0,1,2,3,4,5,6,7,8,9}
S = < number >
P={

< number >— < digitlist >

< digitlist >— < digit > | < digit >< digitlist >

< digit >—0]1]2]3]4]5|6|7|8|9
}

This same approach, with small changes in the grammar, can be used for
creating signed and floating-point numbers. Note that, in principle, it is possible
to build numbers of any length. However, we will see later that this grammar
induces a bias toward short-length numbers, making the pure digit concatenation
approach inefficient when high-precision numbers are needed.

4 Number Length Bias in Digit Concatenation Grammars

The works described in Section 3 studied the ability of GE to find constants, the
length of which (or of their components in the case of floating-point numbers) was
short (between one and five digits) (see e.g., [13] and [7]). Interestingly, in their
results one can notice that the error after several generations is still quite high
in the case of “long” constants (those with at least 5-digit-long components).
Since the focus of these works was on the relative performance obtained by
GE when using different approaches for constant creation, this phenomenon
remained largely unexplained.

Large errors when trying to build long numbers can be explained using simple
concepts from the theory of stochastic context-free grammars [15], in which each

production rule » € P has an associated probability p(r) of being selected.
Consider a normal application of GE that uses a context-free grammar (CFQG).
We can consider the probability of selecting a production rule whose left-hand
side nonterminal symbol is X, to be

1

:mv (2)

p(r)

where |X| is the number of production rules that have X as their left-hand side
symbol. Since we are using CFGs, the probability of a complete derivation is
simply the product of the rule probabilities used and thus, the probability of
generating a particular string (in our case, a number) is the sum of the proba-
bilities of all possible derivations producing that particular string. For example,
the probability of generating the number 5261 (in a GE style) from the digit
concatenation grammar presented before is

< number >— < digitlist > p1 =1.0
< digitlist >— < digit >< digitlist > p2=0.5
< digit >—5 ps = 0.1
< digitlist >— < digit >< digitlist > pg = 0.5
< digit >— 2 ps = 0.1
< digitlist >— < digit >< digitlist > ps = 0.5
< digit >—6 pr =0.1
< digitlist >— < digit > ps = 0.5
< digit >—1 po = 0.1

p(< number > = 5261) = p1p2pspaPsPsP7PPe = 6.25 X 1076.

The probabilistic view presented above applies only when we generate strings
at random, which is the case at initialization. The search algorithm behind GE
will then try to adjust the population so as to increase the individuals’ fitness
(or reduce error). However, from a practical point of view, initial fitness is very
important because it determines to a great extent the efficiency (i.e., the speed
of convergence) of the approach.

In general, the probability of generating in the initial population a number
of n digits (without instantiating any digit to a specific number) using the digit
concatenation grammar is 1/2". Clearly, the longer the length of the target
number, the less likely it is to have a good approximation of it in the initial
population.

5 Experiments

In our experiments, we measure the relative error d; of the best solution & with
respect to the target number value z. It is computed as follows

o (3)
where x # 0, which is always the case in our experiments.

The relative error measure is used as the fitness evaluation which is to be
minimized. It guides a steady-state genetic algorithm which is used as search
algorithm. At each trial, a different target number of length n is randomly gen-
erated in the range [10"~%, 10" — 1]. The parameters of the algorithm and the
experiments are listed in Table 1.

Table 1. Parameters settings used in our experiments

Parameter Value
Search algorithm Steady state GA
Crossover operator One point
Mutation operator Bit-wise mutation
Population size 100
Number of generations 100
Probability of crossover 0.9
Probability of mutation 0.01
Population replacement strategy 100%
Wrapping events No
Number of trials 100

The steady-state genetic algorithm with a 100% population replacement
strategy effectively behaves as an algorithm with a (14 \) replacement strategy
where the best individuals among parents and offspring are passed over to the
next generation.

Figure 1 shows the relative error after 1000 fitness evaluations obtained by
GE as a function of the length of the target number when using the classical
digit concatenation grammar presented in Section 3.

The relative error grows with the target number length reaching a maximum
value of 1.0. A maximum value of the relative error equal to 1.0 means that the
best solutions found after 1000 fitness evaluations are insignificant (in terms of
value) with respect to the long-length target numbers. It should be noted that
the effectiveness of the approach is not under discussion. After 10000 fitness
evaluations, the algorithm was capable of finding the target number irrespective
of its length; however, it should be stressed that the focus of this study is on
efficiency. In this respect, the results show clearly that building numerical values
by using the classical digit concatenation grammar induces a strong bias toward
short-length numbers.

1.0

«© _| o o
o o
o
(e}
s ©
5 ° ;
o]]
Q -
= o 1 o
5 |
3 8 o
o Y |
x o °
o
€] -
- I
j |

ceoHl™

|
D]

~ c-mi(m{ooo o

—-— ©
CJ0=
= -o—

T T T
4 5 6

Number length

Fig. 1. Relative error as a function of the length of the target number. These re-
sults were obtained after 1000 fitness evaluations with the classical digit concatenation
grammar.

The probability of having long-length numbers in the initial population de-
creases exponentially with the numbers’ length. Ideally, this problem is solved
by substituting the digit concatenation production rule by a rule with exactly
the same number of digits as the target number. The rule in question is the
following:

< number > — < digit >< digit > ... < digit > .

n digits

By using this rule, the problem is reduced to select the appropriate value
for each of the digits of the target number. Effectively, short- and long-length
numbers (up to a length of n digits) are generated with equal probability in this
way. Figure 2 shows the relative error obtained by GE as a function of the length
of the target number using this exact-length grammar. Relative errors are small
irrespective of the target number’s length.

The solution just described suffers from one main drawback: It is necessary
to estimate accurately the length of the target number before running the search
process. If the length of the target number is greater than the estimation, the
solution will fail miserably because it will not be possible to generate a number
of the appropriate length. If the length of the target number is shorter than the

0.8 1.0
|

Relative error
0.6

0.4

0.2
|

o [¢]
o 8
0 ———% 66— —$6- 65— 6o o &
T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.0
|

Number length

Fig. 2. Relative error as a function of the length of the target number. These results
were obtained after 1000 fitness evaluations with an exact-length grammar. The gram-
mar corresponds exactly with the length of the target number.

estimate, the relative error will grow exponentially with the overestimation as
shown in Figure 3.

An intermediate solution is thus proposed. It reduces considerably the bias
toward short-length numbers and eliminates the need of estimating the target
number’s length beforehand. The production rules involved in the digit concate-
nation process are the following:

< number > — < digitlist >
< digitlist > — < digit > | < digit >< digitlist >
| < digit >< digit > | < digit >< digit >< digitlist >

| < digit >< digit > ... < digit >

k digits
| < digit >< digit > ... < digit > < digitlist >,

k digits

where k <= n and n is the target number’s length. Figure 4 shows the relative
error obtained with a “hybrid” grammar in which k£ = 5.

In general, the obtained error is much higher than the one obtained with
an exact-length grammar, but lower than the one obtained with a pure digit

le+13
|

Relative error (log)
1e+03 1e+08
| |
RIS
I

le-02

1e-07
t

T T T T T T T T T T T T T T I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Number length overestimation (in digits)

Fig. 3. Relative error obtained after 1000 fitness evaluations with an overestimated (in
this case aimed at 15 digits) exact-length grammar. Note the logarithmic scale in the
error axis.

e
-
[ee]
o
s ©
£ o
()
Q
=2
3 < 8
x o []
[0
g 8
y — 22
I —_ -
S I i Y [| S
T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 14 15

Number length

Fig. 4. Relative error as a function of the length of the target number obtained after
1000 fitness evaluations with a hybrid grammar.

concatenation grammar. The parameter k determines the maximum size of the
building blocks available to GE to produce numbers. It is expected that the
greater k, the more uniform the distribution of numbers of different lengths in
the initial population becomes.

6 Conclusions

Grammatical evolution (GE) is a relatively new evolutionary algorithm for the
synthesis of programs or systems in any arbitrary representation language. This
is possible thanks to a grammar-based search.

This paper highlights the importance of properly defining the grammar used
by GE for the solution of a problem. One of the main strengths of GE is the
possibility of biasing the search by means of a grammar; however, undesired
biases can also be introduced. Although the focus here was on the synthesis of
numerical values, the analysis based on stochastic context-free grammars can be
applied to determine whether there is any undesired grammar-induced bias on
other applications. A careful grammar design is needed in all cases.

This and previous studies have focused only on the synthesis of one numer-
ical value at a time. This has been done because a detailed understanding of
the inner workings of grammatical evolution is necessary before embarking into
more complicated studies. An investigation into the performance of GE on prac-
tically relevant application scenarios, in which several (not just one) numerical
parameters are to be found, should be done in the future.

Acknowledgments

The author is grateful to Thomas Stiitzle, Mauro Birattari and the anonymous
reviewers for their comments and suggestions to improve this paper. The author
is funded by the Programme AlBan, the European Union Programme of High
Level Scholarships for Latin America, scholarship No. E05D054889MX, and the
SWARMANOID project funded by the Future and Emerging Technologies pro-
gramme (IST-FET) of the European Commission (grant IST-022888).

References

1. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. The MIT Press, Cambridge, MA, USA (1992)

2. Koza, J.R.: Automatic synthesis of topologies and numerical parameters. In:
Handbook of Metaheuristics. Fred Glover and Gary A. Kochenberger (editors).
Kluwer Academic Publishers, Boston, MA, USA (2003) 83-104

3. Evett, M., Fernandez, T.: Numeric mutation improves the discovery of numeric
constants in genetic programming. In Koza, J.R., et al., eds.: Genetic Programming
1998: Proceedings of the Third Annual Conference, Morgan Kaufmann (1998) 66—
71

10.

11.

12.

13.

14.

15.

Topchy, A., Punch, W.F.: Faster genetic programming based on local gradient
search of numeric leaf values. In Spector, L., et al., eds.: Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO-2001), San Francisco, CA,
USA, Morgan Kaufmann (2001) 155-162

Li, X., Zhou, C., Nelson, P.C., Tirpak, T.M.: Investigation of constant creation
techniques in the context of gene expression programming. In Keijzer, M., ed.:
LNCS 3103. Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2004), Springer (2004) Late Breaking Paper.

O’Neill, M., Ryan, C.: Grammatical Evolution. Evolutionary Automatic Program-
ming in an Arbitrary Language. Kluwer Academic Publishers (2003)

O’Neill, M., Dempsey, 1., Brabazon, A., Ryan, C.: Analysis of a digit concatenation
approach to constant creation. In Ryan, C., et al.; eds.: LNCS 2610. Proceedings
of EuroGP 2003 — Sixth International European Conference on Genetic Program-
ming, Berlin, Germany, Springer (2003) 173-182

O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Transactions on Evolutionary
Computation 5(4) (2001) 349-358

Brabazon, A., O’Neill, M.: Biologically Inspired Algorithms for Financial Mod-
elling. Springer, Berlin, Germany (2006)

Cleary, R., O’Neill, M.: An attribute grammar decoder for the 01 multiconstrained
knapsack problem. In: LNCS 3448. Evolutionary Computation in Combinatorial
Optimization, Berlin, Germany, Springer-Verlag (2005) 34-45

Tsoulos, I.G., Gavrilis, D., Glavas, E.: Neural network construction using gram-
matical evolution. In: Proceedings of the Fifth IEEE International Symposium on
Signal Processing and Information Technology, Piscataway, NJ, USA, IEEE Press
(2005) 827 — 831

Dempsey, 1., O’Neill, M., Brabazon, A.: Grammatical constant creation. In Deb, K.,
et al., eds.: LNCS 3103. Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2004), Berlin, Germany, Springer-Verlag (2004) 447-458
Dempsey, 1., O’Neill, M., Brabazon, A.: Constant creation in grammatical evolu-
tion. International Journal of Innovative Computing and Applications 1(1) (2007)
23-38

Dempsey, 1., O’Neill, M., Brabazon, A.: meta-Grammar Constant Creation with
Grammatical Evolution by Grammatical Evolution. In: GECCO 2005: Proceedings
of the 2005 Conference on Genetic and Evolutionary Computation, New York, NY,
USA, ACM Press (2005) 1665-1671

Manning, C., Schiitze, H.: Foundations of Statistical Natural Language Processing.
MIT Press, Cambridge, MA, USA (1999)

