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ABSTRACT
Conventional ant-based clustering algorithms and growing
neural gas networks are combined to produce an unsuper-
vised classification algorithm that exploits the strengths of
both techiques. The ant-based clustering algorithm detects
existing classes on a training data set, and at the same time,
trains several growing neural gas networks. On a second
stage, these networks are used to classify previously unseen
input vectors into the classes detected by the ant-based al-
gorithm. The proposed algorithm eliminates the need of
changing the number of agents and the dimensions of the
environment when dealing with large databases.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering—Algorithms; I.2.6
[Artificial Intelligence]: Learning—Connectionism and
neural nets

Keywords
Ant-based algorithms, Classification

1. INTRODUCTION
Collective behaviors of social insects are the outcome of a

process of self-organization [10]. Bonabeau et al. [3] define
self-organization as “a set of dynamical mechanisms whereby
structures appear at the global level of a system from inter-
actions among its lower-level components” (p. 9). An ex-
ample of such behavior can be seen in some termite genera
such as Marcotermes and Cubitermes that create nests of
astonishing complexity [14].
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In an attempt to explain the dynamics of nest building in
these termite genera, Pierre-Paul Grassé [8], proposed that
stigmergy, the indirect influence on the behavior of others
through local environment modifications, was a key factor in
that process. He observed that when workers of Macroter-
mes bellicosus were placed in a container with some soil
pellets, the insects carried about and put down pellets in
an apparently random fashion after an exploration phase
where they moved through the container without taking any
action. At this stage, a pellet just put down by a termite
worker is often picked up and placed somewhere else by an-
other worker. When a pellet is placed on top of another, the
resultant structure appears to be much more attractive and
termites soon start piling more pellets nearby, making the
dropping spot even more attractive [14].

This phenomenon have inspired the creation of cluster-
ing algorithms for exploratory data analysis where insects
are simulated by simple reactive agents acting in a two-
dimensional grid [4, 13].

Neural networks have also been used in cluster analy-
sis [6, 11]. Self-organizing feature maps or SOFM’s [12] are
particularly attractive for this task as similar input patterns
are grouped together adaptively and are represented by a
single neuron. However, the maximum number of clusters
that a SOFM can learn is limited by the number of neu-
rons, which must be set before the training phase. This is
one of its major drawbacks for clustering tasks because, in
general, the number of clusters is unknown. To overcome
this problem, several network architectures that adjust the
number of neurons during the training phase have been pro-
posed [1, 5, 7]. In this paper, we propose an hybridization
of an ant-based clustering algorithm with growing neural
gas networks [7] consisting in a growing neural gas network
embedded in each agent participating in the ant-based al-
gorithm. Every time an agent finds data elements in its
neighborhood, it trains its network by making it learn both,
the topology of data elements in attribute space and their
spatial distribution in the two-dimensional grid that serves
as the ant environment. In this way, the clusters discov-
ered by the ant-based algorithm become classes for a post-
clustering classification phase where the trained networks
are used as classifiers. The proposed hybridization makes
use of growing neural gas networks because the number of
clusters to be found is unknown and the ant-based clustering
algorithm dynamically creates and destroys clusters until a
steady state is reached.



In sections 2 and 3 we present background information on
basic ant-based clustering and growing neural gas networks.
In section 4 we present in detail the proposed hybrid model.
Section 5 explains the experimental strategy used to test
our model. Section 6 summarizes the obtained results. In
section 7 we discuss our model in the light of experimental
evidence and speculate on future extensions and improve-
ments. Finally, we conclude in section 8.

2. ANT-BASED CLUSTERING
Ant-based clustering was introduced by Deneubourg et

al. [4] using a model for spatial sorting. A group of agents
exhibiting the same behavior move randomly over a toroidal
square grid where objects were initially scattered in a ran-
dom fashion. The objects can be picked up, moved or drop-
ped in any free location on the grid. An object is picked
up with high probability if it is not surrounded by other ob-
jects of the same type and is dropped by a loaded agent if
its neighborhood is populated by other objects of the same
type and the location of the agent has no object on it.

Lumer and Faieta [13] generalized Deneubourg et al. [4]
model to apply it to exploratory data analysis through the
creation of clusters of related data. All classical clustering
algorithms depend on a similarity or dissimilarity measure
to determine whether two objects are similar or not. This
algorithm is no exception. However, instead of taking as in-
put a similarity or dissimilarity matrix, this algorithm starts
with something very similar to what we described in the last
paragraph. The probability of picking a data element i is
defined as

pp(i) =

(
kp

kp + f(i)

)2

(1)

where kp is a constant and f(i) is a similarity density mea-
sure with respect to element i. Likewise, the probability of
dropping a data element is given by

pd(i) =

{
2f(i) if f(i) < kd

1 otherwise
(2)

where kd is a constant. The similarity density f(i) for an
element i, at a particular grid location τ , is defined as

f(i) =


1

s2

∑
j∈Neigh(τ)

(
1− d(i, j)

α

)
if f > 0

0 otherwise

(3)

where s2 is the size of the perception area centered at the
location of the agent and α is a scaling factor of the dis-
similarity measure d(i, j) between elements i and j. If it is
assumed that data elements can be represented as points in
an n-dimensional space, then the Euclidean distance could
be used as dissimilarity measure.

In some cases, however, it may be useful to use a simmi-
larity measure, such as the cosine metric. In those cases,
expression 3 is not directly applicable. The following ex-
pression could be used instead

f(i) =
1

s2

∑
j∈Neigh(τ)

(
1

1 + e−S
d(i,j)

α
+D

)
(4)

where S is the steepness of the response curve and D serves
as a displacement factor. In our experiments we fixed S to
5 because it provides a similarity value close to 0 when the

cosine measure is minimum, that is, when the cosine mesure
gives a value of −1, and D to 1 because this allows us to
better distinguish vectors with separation angles between 0
and π/2. This expression has the advantage of limiting the
range of values α can take to (0, 1], given that −1 ≤ d(i, j) ≤
1, as is the case for the cosine metric.

3. GROWING NEURAL GAS NETWORK
Introduced by Fritzke [7] as an approach to overcome

some of the limitations of conventional self-organizing maps;
namely, the a priori fixed number of neurons and the prob-
lem of “dead” neurons or neurons that do not update their
weight vectors due to a misplacing in the input space. For-
mally, a growing neural gas network consists of

• a set A of units (or nodes). Each unit c ∈ A has an
associated reference vector wc ∈ Rn. The reference
vectors can be regarded as positions in input space of
the corresponding units.

• a set N of connections (or edges) among pairs of units.
These connections are not weighted. Their sole pur-
pose is the definition of topological structure.

The idea behind the training algorithm is to succesively
add new units to an initially small network by evaluating
local statistical measures gathered during previous adapta-
tion steps. The network topology is generated incrementally
by using a competitive Hebbian learning rule and has a di-
mensionality that depends on the input data and can vary
locally.

The training algorithm begins with two randomly located
units and an input signal that is to be learned. The learning
rule used to adapt the reference vectors of the unit that is
closest in the input space to the current input signal and its
topological neighbors is

w(t+1) = w(t) + ε(ξ −w(t)) (5)

where w is the reference vector of the adapting unit, ε is
a constant called learning rate, ξ is the input signal being
learned. The learning rates for the closest unit and its topo-
logical neighbors are different.

The squared error of the nearest unit in turn is accumu-
lated, so that after λ input signals have been learned, a new
unit is created half between the two neighboring units with
the highest accumulated errors. The deletion of units hap-
pens whenever a unit is not topologically connected with
any other unit. This occurs after a given number of input
signals have not fired a unit. This process continues until a
stop criterion is met. The complete training algorithm can
be found in [7].

4. HYBRID MODEL
The proposed hybrid model consists of a set of agents,

each of which has an embedded growing neural gas network.
The agents behavior corresponds to the model described in
section 2 with the main difference that in the hybrid model,
agents learn the topology of their environment as they ex-
plore it.

An agent’s growing neural gas network is always adapting
itself to reflect the spatial distribution of data on the grid
and, while doing so, the agent uses the network to guide its
search for favorable dropping locations. Whenever an agent



picks up a data object, it classifies it using its own neural
gas network to bias its random walk to the location of the
winner neuron. The winner neuron should be located near
the most similar objects to the one just picked up because
the network reflects the spatial distribution of objects in the
environment. The main goal of this is to create clusters of
higher quality.

After some stopping criterion is met, usually a predefined
number of simulation cycles, each agent has a trained neural
gas network. However, because individual networks may not
cover the whole environment, a collective network is created
by taking ∪n

i=1A
′
i where A′

i ⊂ Ai and Ai is the set of nodes in
the growing neural network of the ith agent. The collective
network is used in a second phase to further classify input
vectors that were not used during the training phase. Each
unit c′i ∈ A′

i is in the neighborhood of some data object. In
our experiments, the neighboorhood is a square area of 3×3
locations on the grid. If more than one unit is in the data
object neighborhood, the closest unit (in attribute space)
is selected to be part of the collective network. Therefore,
the clusters discovered by the ant-based clustering algorithm
are used as the classes into which the new input patterns are
going to be classified.

The complete resultant unsupervised classification algo-
rithm is:

1. Initialization phase. (General).

(a) Randomly scatter data objects on a toroidal square
grid.

(b) Create and randomly place agents with random
headings on the grid.

i. Initialize a growing neural gas network em-
bedded into each agent. (See [7]).

2. Training-clustering phase. (Per agent).

(a) Move randomly.

(b) If there are any data objects within perception
area then train the embedded network with them.
(See [7]).

(c) Continue with behavior described in section 2 un-
til a stopping criterion is met, with the following
change:

i. If an object has just been picked up, classify
it using network.

ii. Set heading towards the location of winner
neuron.

3. Classification phase. (General).

(a) Extract clusters from the grid. The clusters be-
come classes for classification.

(b) From all individual networks, determine which
neurons will be part of the collective network.

(c) Classify test input vectors with the collective net-
work.

5. EXPERIMENTAL SETUP
The proposed hybrid algorithm was tested on two clas-

sification tasks. The data sets used for this purpose were
the Ionosphere and the Image segmentation databases from

the UCI Machine Learning Repository [2]. The Ionosphere
database consists of 351 instances with 34 continuous at-
tributes each. Instances are classified into two classes, there
are 225 positive and 126 negative examples respectively. The
training sets used in our experiments were composed of 232
(66.6% of the total) instances. The experiment was repeated
30 times and in every repetition, randomly selected instances
for the training and test sets were used. The Image segmen-
tation database has 7 classes and is divided into two sets:
the training and test sets. The training set is composed of
210 instances with 30 members of each class. The test set is
composed of 2100 instances with 300 members of each class.
With this database, the experiments were repeated 30 times
too.

To eliminate the bias on similarity measures provoked by
different scales within data attributes, we standardized the
database. The similarity measure used in our experiments
was the cosine metric1.

For the ant model, expressions 1 and 2 were used to
compute the picking and dropping probabilities respectively.
The local similarity density function used was 4. Table 1
summarizes all other agent settings used in our experiments.
These settings were selected because they gave acceptable
results in preliminary tests.

Table 1: Agent settings

Parameter Value

kp 0.1

kd 0.15

α 0.7

Neighborhood size 5× 5

Number of agents 20

The embedded growing neural gas networks have a pa-
rameter set on their own, we refer the reader to [7] for a
detailed explanation of the meaning and effects of all these
parameters. Table 2 summarizes the parameter set for the
embedded growing neural gas networks used in our experi-
ments.

Table 2: Embedded growing neural gas networks
settings

Parameter Value

Winner neuron learning rate εb 0.8

Neighboring neurons learning rate εn 0.005

Maximum edge age 50

Growing threshold λ 150

Local error decreasing rate α 0.5

Global error decreasing rate d 0.995

A learning rate of 0.8 is normally considered too high,
however, due to the fact that the ant environment is highly

1In preliminary tests, the cosine metric had better perfor-
mance than Euclidean distance.



dynamic, a learning rate of this characteristics is needed in
order to allow the network learn the real data distribution
on the grid. A crucial condition for the proper operation of
the hybrid algorithm.

In an effort to formally evaluate the clustering quality
of ant-based algorithms, Handl et al. [9] applied four va-
lidity measures. From these four measures, we used the
Rand index and the F-measure, which determine a similar-
ity measure between the known correct classification C and
the some other classification P . They are defined as follows:

F -Measure. The harmonic mean of recall and precision,
also known as the F -Measure. Commonly associated
to the information retrieval field, recall and precision
are measures that give us some idea of how well a clus-
tering algorithm is identifying the classes present in a
database. In the context of classification, recall is de-
fined as r(i, j) =

nij

ni
where nij is the number of ele-

ments of class i in cluster j and ni is the number of
elements of class i. Precision is defined as p(i, j) =

nij

nj

where nj is the number of elements in cluster j. For a
class i and a cluster j the F -Measure is defined by

F (i, j) =
2 p(i, j) r(i, j)

p(i, j) + r(i, j)

The overall F -Measure for the classification generated
by the clustering algorithm is given by

F =
∑

i

ni

n
max

j
{F (i, j)} (6)

where n is the size of the data set. F is limited to the
interval [0, 1] with a value of 1 with a perfect clustering.

Rand Statistic. It is defined as

R =
a + d

a + b + c + d
(7)

where

• a is the number of pairs where both elements be-
long to the same class in C and to the same group
of the partition P .

• b is the number of pairs where both elements be-
long to the same class in C and to different groups
in P .

• c is the number of pairs where both elements be-
long to different classes in C and to the same
group in P .

• d is the number of pairs where both elements
belong to different classes in C and to different
groups in P .

Note that a + b + c + d = N(N − 1)/2 where N is the
total size of the data set. The Rand statistic is limited
to the interval [0, 1] with a value of 1 with a perfect
clustering.

6. RESULTS
Figure 1 shows the F−Measure 1(a) and Rand statis-

tic 1(b) scores over time for the algorithm during training
and classification phases with the Ionosphere database.
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Figure 1: F-Measure and Rand statistic scores over
time for the hybrid algorithm. Subfigure 1(a) shows
the F-Measure behavior over time. Subfigure 1(b)
shows the Rand statistic behavior over time.

Figure 2 shows the F−Measure 2(a) and Rand statis-
tic 2(b) scores over time for the algorithm during train-
ing and classification phases with the Image segmentation
database.

These experiments results show that the classification per-
formance with unseen examples is strongly correlated with
the clustering quality that define classes into which new in-
put vector are classified. A result that was expected due
to the fact that the ant-based clustering algorithm is the
responsible of determining the classes into which the classi-
fication is done. The hybridization looks promising from the
perspective of ant-based clustering because it could be use-
ful with large databases. By using the hybrid algorithm one
could classify, in an unsupervised way, elements of a large
database without increasing the number of agents or the en-
vironment dimensions, given, of course, that the training set
is representative enough of the whole data collection.

7. DISCUSSION
The hybridization proposed in this paper opens the door
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Figure 2: F-Measure and Rand statistic scores over
time for the hybrid algorithm. Subfigure 2(a) shows
the F-Measure behavior over time. Subfigure 2(b)
shows the Rand statistic behavior over time.

to the application of ant-based algorithms to large database
explorations. By clustering a sample of a database, the ant-
based clustering algorithm parameters need not be changed
whenever the database being explored changes. In particu-
lar, the number of agents and the environment dimensions.
A collective neural gas network is used instead of a sole
network, because networks are not equally trained for all
regions of the input space due to the agents random walk.
This collective network covers the environment and thus,
the final classification considers all the classes discovered by
the ant-based algorithm.

There is however, an important drawback. The multiple
parameter set needed to fine tune the algorithm. This is
consequence of the lack of understanding of the impact in the
global behavior of a colony of simulated insect-like agents.
This parameter set need to be tuned for specific needs.

8. CONCLUSIONS
We have presented an hybrid algorithm with ant-based

clustering algorithms and growing neural gas networks to

create an unsupervised classification algorithm. Ant-based
clustering discovers natural partitions in data and neural
networks learn their distribution in both, the attribute space
and the plane, where ants use them to guide their search for
favorable dropping locations. This symbiotic relationship
overcomes some of the limitations of both techniques.

Results suggest that by using this hybrid approach, ant-
based clustering techniques can be used for classification
tasks over large databases.
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