
Chapter 3
Local Search

Marco A. Montes de Oca, Carlos Cotta, and Ferrante Neri

3.1 Basic Concepts

At an abstract level, memetic algorithms can be seen as a broad class of population-
based stochastic local search (SLS) methods, where a main theme is “exploiting
all available knowledge about a problem,” see also Moscato and Cotta [618], page
105. The most wide-spread implementation of this theme is probably that of im-
proving some or all individuals in the population by some local search method. This
combination of a population-based, global search and a single-solution local search
is a very appealing one. The global search capacity of the evolutionary part of a
memetic algorithm takes care of exploration, trying to identify the most promising
search space regions; the local search part scrutinizes the surroundings of some ini-
tial solution, exploiting it in this way. This idea is not only an appealing one, it is
also practically a very successful one. In fact, for a vast majority of combinatorial
optimization problems and, as it is also becoming more clear in recent research, also
for many continuous optimization problems this combination leads to some of best
performing heuristic optimization algorithms.

The role of the local search is fundamental and the selection of its search rule
and its harmonization within the global search schemes make the global algorith-
mic success of memetic frameworks. The local search can be integrated within the

Marco A. Montes de Oca
IRIDIA, CoDE, Université Libre de Bruxelles, Brussels, Belgium
e-mail: mmontes@ulb.ac.be

Carlos Cotta
Department of Lenguajes y Ciencias de la Computación, University of Malaga, Spain
e-mail: ccottap@lcc.uma.es

Ferrante Neri
Department of Mathematical Information Technology, P.O. Box 35 (Agora), 40014,
University of Jyväskylä, Finland
e-mail: ferrante.neri@jyu.fi

F. Neri et al. (Eds.): Handbook of Memetic Algorithms, SCI 379, pp. 29–41.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2012

mmontes@ulb.ac.be
ccottap@lcc.uma.es
ferrante.neri@jyu.fi

30 M.A.M. de Oca, C. Cotta, and F. Neri

evolutionary cycle mainly in two ways. The first is the so called “life-time learn-
ing”, i.e., the application of the local search to a candidate solution. In this case the
metaphor is the cultural development of the individuals which is then transmitted to
the other solutions over the subsequent generations. The second way is the applica-
tion of the local search during the solution generation, i.e., the generation of a perfect
child. This class of memetic implementations aims at selecting the most convenient
offspring amongst the potential offspring solutions. This aim can be achieved, for
example, by applying a local search to select the most convenient cutting point in a
genetic algorithm crossover, or by using some kind of complete technique for this
purpose [164, 165] – see Chapter 12.

In this chapter, we focus on the local search techniques and give a concise
overview of local improvement methods both for combinatorial and for continu-
ous optimization problems. Rather than giving a detailed account of all intricacies
of local search algorithms, we focus on the main concepts and review some of the
main local search variants. We start by first introducing some basic notions about
neighborhoods and local optima. Next, we discuss the characterization of the local
search and illustrate in details, some examples of local search algorithms in combi-
natorial and continuous domains. Without loss of generality, we assume here that we
deal with minimization problems. Obviously, everything discussed here can easily
be adapted to the maximization case.

3.2 Neighborhoods and Local Optima

The notion of neighborhood is essential to understand local search. Intuitively, a
solution s′ is termed a neighbor of s if the former can be reached from the latter in
a single step (by the application of a so-called move operator). The neighborhood
N (s) of a solution s is the set of all its neighbors. Notice firstly that neighbor-
hood relationships are often –but not always– symmetrical. Secondly, the existence
of a move operator allows not having to define neighborhoods explicitly (by enu-
merating the neighbors) but just implicitly (by referring to the potential transitions
attainable upon application of the move operator). Moves can be typically regarded
as modifications of some parts of a solution. Under an appropriate distance measure
between solutions, these moves can thus be seen as “local”, hence the name of the
search paradigm. This said, the notion of closeness between neighboring solutions
is not straightforward; as a matter of fact, neighborhood relationships can be quite
complex – see [624].

Local search algorithms in combinatorial and continuous spaces have some in-
trinsic differences due to the differences in the types of the underlying search spaces.
Let us denote the search space by S in the following. While combinatorial search
spaces are finite for finite size problems, continuous search spaces are infinite and
not enumerable. From these differences some other differences also result in the
notions of local optima and the way how one is searching for improved candidate
solutions. Intuitively, a local optimum is a solution for which in its local neighbor-
hood no better solution exists.

3 Local Search 31

In combinatorial problems, the number of candidate solutions in the neighbor-
hood of a current candidate solution s is enumerable and a local optimum can be
defined as a a candidate solution sl for which it holds that ∀s ∈ N (sl) we have
f (s) � f (sl), where f : s �→ R is the objective function. It is also easy to identify
whether a candidate solution is a local optimum, since one simply needs to enu-
merate all neighboring candidate solutions and check whether they are better or not
than the current candidate solution. If none such exists, the solution is a local opti-
mum. If the number of neighbors is polynomial in the instance size and the objective
function is computable in polynomial time, which is the typical case for many neigh-
borhood definitions and optimization problems, then this check can be also done in
polynomial time.

For continuous optimization problems, the decision space is in principle a dense
set and is thus composed of an infinite amount of points. This makes the enumer-
ation impossible for the search of the optimum. It must be remarked that in the
representation within a (finite) machine, dense sets cannot be represented with an
infinite set and the sets are technically finite and the distance between each pairs
of points is at least equal to the machine precision. An extensive description of this
topic is given in Chapter 8, where continuous optimization problems are discussed.
We can formally define a local optimum in a continuous space as a point s◦ ∈ S,
such that

f (s◦) � f (s) , (3.1)

for all points s ∈ S that satisfy the relation 0 � ||s◦ − s|| � ε . The set of points
encircled in the region limited by the magnitude of ε is the neighborhood of the
local optimum s◦. Note that any global optimum is also a local optimum; however,
the opposite is not necessarily true.

According to an alternative representation, in continuous optimization, a global
optimum is a solution s� ∈ S, such that

s� = argmin
s∈S

f (s) , (3.2)

where S ⊆ R
n is the feasible search space, and f : S �→ R is the cost function to

minimize. When S = R
n the problem of finding the optimum of f is called uncon-

strained, otherwise it is said to be constrained.

3.3 Classifications of Local Search

At a general level, for both combinatorial and continuous domains, local search
algorithms can be classified from various perspectives:

1. According to the nature of the search logic:

• Stochastic: the generation of the trial solution occurs in a randomized way
• Deterministic: the generation of the trial solution is deterministic

32 M.A.M. de Oca, C. Cotta, and F. Neri

2. According to the amount of solutions involved

• Single-solution: the algorithm processes and perturbs only one solution
• Multiple-solution: the algorithm processes more that one solution which

are usually employed for interacting and jointly generate trial solutions

3. According to the pivot rule:

• Steepest Descent: the algorithm generates a set of solutions and selects the
most promising only after having explored all the possibilities
• Greedy: the algorithm performs the replacement as soon as detects a solu-

tion outperforming the current best and starts over the exploration

On the basis of these classifications two important considerations must be carried
out. First, every local search algorithm and, more generally, every optimization al-
gorithm, can be seen as a logical procedure composed of two sets of operations: 1)
generation of trial solutions 2) selection of trial solutions. In this light the first two
classifications above characterize some crucial aspects of the trial solution genera-
tion while the latter regards the selection phase. Second, the classifications should
not be considered in a binary way but more as properties of the procedure phases.
For example, an algorithm is not either fully stochastic or fully deterministic but is
likely to have a certain degree of stochastic logic and determinism. For two given
algorithms a meaningful statement is to establish which among those two is “more”
deterministic. To give a more concrete example, the simplex proposed in [653] can-
not be considered a stochastic algorithm but due to the randomized re-sampling of
the solutions is more stochastic than the Powell algorithm proposed in [728]. In a
similar way, the classification according to the pivot rule must be interpreted as a
property of the selection phase. An algorithm which explores/enumerates the entire
neighborhood of a trial solution is possible as well as an algorithm which centers
the search in the new current best solution. On the other hand, several intermediate
possibilities can also be implemented and lead to efficient algorithms.

In this light, also the concepts of local and global searches should be seen as
a progressive property of the algorithm. Intuitively, a local search is thought of as
an algorithmic structure converging to the closest local optimum while the global
search should have the potential of detecting the global optimum. De facto this def-
inition is not rigorous and does not correspond to the actual behavior of the algo-
rithms. For example, a hill-descender with a fully deterministic candidate solution
generation can potentially converge to the global optimum of a highly multi-modal
fitness landscape if a proper initial radius is set. Dually, an evolutionary algorithm
with a population composed of a few individuals can converge to a suboptimal so-
lution in the neighborhood of the best individual of the initial population. In this
sense, an algorithm is not simply either global or local but can be characterized by
a certain degree of local/global search features.

3 Local Search 33

3.4 Local Search in Combinatorial Domains

Combinatorial spaces constitute a formidable and challenging application domain
for local search techniques. Unlike continuous spaces in which neighborhood rela-
tionships are naturally defined in terms of Euclidean distance or any other suitable
metric on R

n, the definition of neighborhood in discrete domains is a major step in
the resolution of the problem under consideration. Following the terminology used
in forma analysis [750], we can consider situations in which the representation of
solutions is orthogonal –i.e., solutions are represented as a collection of variables
vi, each of them taking values from a domain Di and any combination of values
for different variables being feasible– and situations in which the representation is
non-orthogonal. In the former case the (feasible) search space S is

S =
n

∏
i=1

Di, (3.3)

i.e., the Cartesian product of variable domains. It is then possible to define neighbor-
hood relationships on the basis of modifications of single variables. An illustrative
example is that of binary strings, the typical representation in traditional genetic
algorithms. Solutions thus belong to B

n, and we can define a collection of nested
neighborhoods Ni(s) = {s′ | H(s,s′) = i}, where H(s,s′) is the Hamming distance
between s and s′. This example is easily generalizable to integer representations, and
can be further extended by considering the L1 norm (Manhattan distance) or alike
in case there was some locality between numerically close variable values.

The case of non-orthogonal representations is more complex since not every com-
bination of variable values is feasible in them. This means that moves must be done
solution-wise rather than variable-wise. A popular example is that of permutations:
solutions are in this case arrangements of a collection of n objects (the integers
1, · · · ,n typically), and no single variable can be modified in isolation. There are
numerous possibilities for perturbing permutations though. For example:

• swap: two elements are selected and interchanged.
• insert: an element is selected, removed from its location and inserted at another

place.
• invert: a subsequence of adjacent elements is selected and their ordering is re-

versed.

just to name a few (please check chapter 7 of [764] for an overview of perturbation
strategies for permutations in the context of the Traveling Salesman Problem). The
situation can obviously be more complex in cases where other more sophisticated
structures are used as representation of solutions, e.g., trees [19, 152, 723].

The neighborhoods sketched above are central in the functioning of single so-
lution metaheuristics. These algorithms process one solution and after subsequent
modifications returns a solution which is supposed to be similar to the starting so-
lution but characterized by a higher performance. Within the context of MAs, these
local searches process one solution within the evolutionary framework and improve
during their “life-time”.

34 M.A.M. de Oca, C. Cotta, and F. Neri

Algorithm 2. A Local Search Algorithm

Procedure Local Search (s);1

begin2

INITIALIZEMEMORY(M);3

repeat4

N ←PICKNEIGHBORHOODSTRUCTURE(M);5

s′ ← PICKNEIGHBOR(N ,s);6

SELECT(s,s′,M);7

UPDATEMEMORY(s,M);8

until TERMINATIONCRITERION(M) ;9

return s;10

end11

Algorithm 2 provides a rather general outline of a single-solution metaheuris-
tic. This algorithm receives an initial solution and iteratively picks a neighbor and
decides whether to accept this neighbor as the new current solution or not. This pro-
cess can be modulated by a memory structure that the algorithm may use in order
to decide which neighborhood should be used to select the neighbor, whether to ac-
cept the latter as new current solution or not, and even to support some high-level
strategy for intensifying or diversifying the search.

One of the most distinctive features of local search strategies in combinatorial
domains is the possibility of performing some kind of incremental evaluation of
neighbors, i.e., computing f (s′) as f (s′) = f (s) + Δ f (s,s′), where Δ f (s,s′) is a
term that depends on the perturbation exerted on s to obtain s′ and can be typically
computed in a simple and efficient way. This often means that the cost of explor-
ing the neighborhood of a solution is not much higher than a few full evaluations,
thus allowing the practical use of intensive local search procedures. The following
subsections give some examples of single-solution local search algorithms.

3.4.1 Hill Climbing

The simplest way to perform the local search in a combinatorial space is obtained
by perturbing a trial solution and replacing it with the perturbed solution when
the newly generate candidate solution outperforms the solution before perturbation.
This procedure is termed Hill Climbing (HC) –or hill descending in a minimization
context– and can be characterized in terms of the pseudocode depicted in Algorithm
2 as a memoryless, single-neighborhood local search procedure.

There can be several variants of the algorithm depending on, for instance, the
pivot rule as mentioned in Sect. 3.3. Thus, we have steepest-ascent HC (an algo-
rithm that explores the full neighborhood N (s) of the current solution s , picks the
best neighbor, accepts it if it is better than the incumbent) and random HC (an algo-
rithm that picks a single random neighbor s′ ∈N (x) and accepts it if is better than
s). In the first case, the algorithm terminates upon finding a local optimum (i.e., a
solution s which is better than any other s′ ∈N (x)) or exhausting its computational

3 Local Search 35

budget; in the second case only the computational limit applies, unless the algorithm
keeps track of the neighbors generated and is capable of avoiding duplicates and/or
detecting when the neighborhood is fully explored.

In some cases the neighborhood is very large and a full exploration is not possible
(at least using the simple schema of HC – local branching procedures for exploring
very large neighborhoods are possible though [263]). Such situations are usually
dealt with by considering a random sampling of a certain size of the neighborhood,
or by resorting to a simpler random HC. Another important issue is the presence
of plateaus, i.e., when the best neighbor is neither better nor worse than the current
solution. In that case the algorithm may opt for terminating, or may try to navigate
through the plateau by accepting this best neighbor even if it is not strictly better
than the incumbent. This is done for example in GSAT [804], a powerful solver for
the MAX-SAT problem. Some strategy for avoiding cycling (i.e., oscillating search
between a couple of solutions) may be required in this case. these are typically used
in tabu search – see Sect. 3.4.3.

3.4.2 Simulated Annealing

While simple, the selection strategy depicted before for HC is unable to cope with
rugged search spaces in which local optima are manifold, at least as an independent
search technique. The search will terminate in a local optimum and it will have to
be restarted from a different initial solution in order to locate other local optima
(and eventually the global optimum). Such a restarting strategy is a simple way of
endowing HC with global optimization capabilities, yet in some sense can be seen
as a brute-force approach. More sophisticated strategies are however possible in or-
der to escape from local optima. In particular, uphill moves (i.e., moves to worse
solutions) must be at some point accepted. This is precisely the case of Simulated
Annealing (SA) [122, 468]. SA is a single solution metaheuristic which performs
the search of new solutions according to the logic described for HC but, in addition
to performing the replacement when f (s′) � f (s), a worsening in the performance
is accepted with a certain probability. This probability depends exponentially on the
run-time, i.e., it is high at the beginning of the (local) optimization process and low
at its end. The acceptance of only improvements may result into the fact that the
algorithm gets stuck on a suboptimal solution. This condition is clearly undesired
because if the algorithm does not succeed at improving its candidate solution for a
large number of function calls, the algorithmic budget is wasted and the final solu-
tion is likely to have a poor performance. Thus, the main idea behind SA is to avoid
such situation by refreshing the solution. The acceptance of a slightly worse solu-
tion should prevent the algorithm from getting stuck in some suboptimal solutions.
To be precise, the neighboring configuration is accepted with probability P given by

P =
{

1, if Δ f > 0

e−
Δ f
T , otherwise

(3.4)

36 M.A.M. de Oca, C. Cotta, and F. Neri

where T is a time-varying parameter termed temperature. This parameter modulates
the acceptance probability, since the larger the temperature, the worse an acceptable
neighbor can be. This parameter is decreased from its initial value T0 to a final value
Tk < T0 via a process termed cooling schedule. There exist many cooling schedules
in the literature, such as arithmetic, geometric or hyperbolic cooling [867]. In ad-
dition, there exist adaptive cooling strategies that take into account the evolution of
the search, performing cooling and reheating as required, e.g., [243].

3.4.3 Tabu Search

Tabu Search (TS) is memory-based local search metaheuristic [309, 310, 317] with
global optimization capabilities. It can be regarded a sophisticated extension of ba-
sic HC in which the best neighboring solution is chosen as the next configuration,
even if it is worse than the current one. Notice that in case the neighborhood rela-
tionship is symmetric, it might happen that the best neighbor of solution s was s′ and
vice versa. In that case a memory-less search would simply cycle between these two
solutions. TS avoids this by keeping a so-called tabu list of movements: a neigh-
boring solution is accepted only if the corresponding move is not tabu. The actual
meaning of a move being tabu may vary depending on the problem and designer’s
choice. Thus, it may be possible that it is tabu to restore a modified variable to a
previous value, or it may be tabu to modify that variable at all (an analogous reason-
ing can be done when the moves are done solution-wise –e.g., as in permutations–
rather than variable-wise). The tabu status of a move is not permanent: it only lasts
for a number of search steps, whose value is termed tabu tenure. The tabu tenure
can be fixed, or may vary during the search (even randomly within certain limits).
The latter is useful to hinder long cycles in the search. In addition, it is common to
consider an aspiration criterion that allows overriding the tabu status of a move, e.g.,
a move is accepted if it improves the best known solution even if it is tabu.

Algorithm 3 depicts the basic structure of a TS algorithm. It must be noted that
a full-fledged TS algorithm is often endowed with additional strategies for intensi-
fying and diversifying the search (e.g., frequency-based strategies that promote or
penalize attribute values that occur frequently), and may also incorporate multiple
neighborhoods among which the algorithm oscillates strategically.

3.5 Local Search in Continuous Domains

In this section, we turn our attention to optimization in continuous domains. In con-
trast to combinatorial optimization, where the search space is finite, in continuous
optimization the search space is, in theory, infinite. Of course, in practice, the search
space is also discrete as one is constrained by the precision of the representation of
floating point numbers in the host computer. Nevertheless, its cardinality is so huge
that for practical purposes it can be regarded as continuous.

Finding an extremum in a continuous domains is a different story. It is a very im-
portant task but it’s difficult in general. The main difference with respect to the local

3 Local Search 37

Algorithm 3. Tabu Search

Procedure Tabu Search (s,N);1

begin2

INITIALIZETABULIST(M);3

s∗ ← s; // best known solution4

repeat5

L←GENERATENEIGHBORLIST(N ,s);6

s′ ← PICKBEST(L);7

if ISTABU(s′,M) and not ASPIRATIONCRITERIA(s′,s∗) then8

s′ ← PICKBESTNONTABU(L)9

endif10

UPDATETABULIST(s,s′,M);11

s← s′;12

if f (s∗) > f (s) then13

s∗ ← s14

endif15

until TERMINATIONCRITERION(M) ;16

return s∗;17

end18

search in discrete domain is the concept of gradient. More specifically, in continuous
optimization, a local search can make use of gradient information in order to quickly
descend the basin of attraction and thus support a global optimization framework
which performs the selection of the search directions by means of the only fitness
comparisons. For example, a trivial MA composed of an evolutionary framework
and a hill-climber combines two alternative search logics: the fitness comparison
of distant solutions generated within the decision space offered by the evolutionary
framework and the gradient based search logic offered by the hill-climber. A proper
combination of global and local search guarantees the success of a MA.

This section focuses on local search for continuous optimization problems. After
some basic concepts and a classification of LS techniques for continuous domains,
four popular algorithms are briefly described and a short survey on other techniques
is given.

3.5.1 Classification of Local Search Techniques for Continuous
Domains

The main criterion to classify local search methods for continuous domains is based
on the order of the derivatives used for exploring the search space. Based on this
criterion, optimization methods can be classified as follows:

Zeroth-order methods. Methods that belong to this class are called direct search
methods. According to Trosset’s definition [892], direct search methods are those
that work with ordinal relations between objective function values. They do not

38 M.A.M. de Oca, C. Cotta, and F. Neri

use the actual values to model, directly or indireclty, higher order properties of
the objective function.
First-order methods. This class of methods rely on direct access to the ob-
jective function and to the gradient vector at any point. Methods referred to as
“derivative-free”, belong to this category if the zeroth-order information is used
to approximate higher order properties of the objective function.
Second-order methods. These methods use objective function values, (numeri-
cal approximations of) gradient vectors, and (numerical approximations of) Hes-
sian matrices.

A second classification criterion is whether a method is stochastic or deterministic.
Stochastic methods make randomized choices during their execution, while deter-
ministic methods do not. These randomized choices encompass solution generation
and/or solution selection [393]. In memetic algorithms, both types of techniques are
used; however, deterministic methods are more commonly used. A brief description
of some of these techniques is presented in the following section.

3.5.2 Commonly Used Local Search Techniques in Memetic
Algorithms for Continuous Domains

In this section, we describe some of the most commonly used local search tech-
niques in the literature of memetic algorithms for continuous optimization. Addi-
tionally, each of the algorithms that are described in detail belong to different strate-
gies for local optimization, namely, downhill, gradient, quasi-Newton, and trust-
region strategies.

3.5.2.1 Downhill Strategy: Simplex Method

This method, which was proposed by Nelder and Mead [653], is used for mini-
mizing an n-dimensional objective function f . It is based on a simplex, which is
composed of a set of n + 1 points P = {P0,P1, . . . ,Pn} in the search space. At each
iteration of the algorithm, the simplex can modified by at least one of three opera-
tions: reflection, contraction, and expansion. We denote Ph and Pl as the points with
the highest and lowest objective function values, respectively. P̄ is the centroid of
the points Pi such that f (Pi) < f (Ph) ∀Pi ∈P . The reflection of Ph, denoted by P�,
is defined as

P� = (1 +α)P̄−αPh , (3.5)

where α > 0 is a parameter called reflection coefficient. If f (Pl) < f (P�) < f (Ph),
then Ph is replaced by P�, and the algorithm starts a new iteration. If f (P�) < f (Pl),
then P� is expaned to P�� as follows

P�� = γP� +(1− γ)P̄ , (3.6)

where γ > 1 is a parameter called expansion coefficient. If f (P��) < f (Pl), then Ph

is replaced by P��, and the algorithm starts a new iteration. However, if f (P��) >

3 Local Search 39

f (Pl), then it is said that the expansion operation failed and Ph is replaced by P�

before continuing to the next iteration.
If f (P�) > f (Pi) ∀Pi ∈P \{Ph}, then Ph is replaced by P� only if f (P�) < f (Ph),

otherwise Ph remains unchanged. After this operation, a new point P�� is generated
as follows

P�� = βPh +(1−β)P̄, (3.7)

where 0 < β < 1 is a parameter called contraction coefficient. Ph is replaced by
P�� unless f (P��) > min{ f (Ph), f (P�)}, in which case all points Pi are replaced by
(Pi + Pl)/2 before the next iteration begins.

The termination criterion can be either a minimum displacement in the search
space, a minimum decrease in the objective function value, or a maximum number
of iterations. This method has been used many times as a local search component of
other algorithms (e.g., [123, 250, 383, 540, 607, 680, 719]).

3.5.2.2 Gradient Strategy: Powell’s Direction Set Method

This method was proposed by M. J. D. Powell [728]. It tries to minimize an objective
function f : R

n→ R by constructing a set of conjugate directions through a series
of line searches. Directions vi i ∈ {1 : n} are said to be conjugate with respect to an
n×n positive definite matrix A, if

vT
i Av j = 0 , ∀i, j ∈ {1 : n} , i �= j . (3.8)

Furthermore, to be conjugate, directions vi i∈ {1 : n}must be linearly independent.
Conjugate search directions are attractive because if A is the Hessian matrix of the

objective function, it can be minimized in exactly n line searches [731]. Although
Powell’s method does not need information about the objective function’s deriva-
tives, it can be considered a gradient strategy because it uses (implicitly) second
order properties of the objective function [801].

The basic procedure of this method is the following: First, from an initial point
P0 ∈ R

n, it performs n line searches using the unit vectors ei as initial search direc-
tions ui. At each step, the new initial point from which the next line search is carried
out is the point where the previous line search found a relative minimum. A point Pn

denotes the minimum discovered after all n line searches. Second, the method elim-
inates the first search direction by doing ui = ui+1 ∀i ∈ {1 : n−1}, and replacing the
last direction un for Pn−P0. Next, a move to the minimum along the direction un is
performed.

Performing n iterations of the procedure described above, would minimize a
quadratic objective function using a total of n(n + 1) line searches. However, un-
der some circumstances, it is possible that the set of constructed directions become
linearly dependent, which would make the algorithm fail. To prevent this from hap-
pening, after n or n + 1 iterations, the set of search directions can be reset to either
the original unit vectors, or to the columns of an orthogonal matrix (e.g., obtained
by computing the principal components of the old direction set). Another approach

40 M.A.M. de Oca, C. Cotta, and F. Neri

is to substitute search directions in such a way as to maximize the determinant of
the normalized direction vectors.

The method terminates when the magnitude of change of all variables is smaller
than a predefined threshold. Powell’s method has been used in numerous hybrid
algorithms (e.g., [609, 680, 683, 766, 806]).

3.5.2.3 Quasi-Newton Strategy: Davidon-Fletcher-Powell Method

A Newton strategy uses the objective function’s first and second order derivatives to
rapidly optimize quadratic forms. In most practical cases, however, a quasi-Newton
strategy is preferred. In a quasi-Newton strategy, the inverse of the objective func-
tion’s Hessian is not computed directly, it is approximated from the objective func-
tion’s gradient.

The Davidon-Fletcher-Powell method, also known as the variable metric strategy,
was proposed by Fletcher and Powell [266], who based their proposal on Davidon’s
work [182]. It is an iterative procedure that works as follows. First, the user needs
to specify an initial guess P0 for the solution. An n× n matrix H0 must also be
initialized. Normally, H0 = I. For any iteration k, we have

Pk+1 = Pk− skHT
k ∇ f (Pk) , (3.9)

where the step length sk is computed by line search and it is the value that minimizes
the objective function along the direction−HT

k ∇ f (Pk) from the current solution Pk.
The matrix Hk is updated as follows

Hk+1 = Hk +
ykyT

k

yT
k zk
− Hkzk(Hkzk)T

zT
k Hkzk

, (3.10)

where yk = Pk+1−Pk =−skHT
k ∇ f (Pk), and zk = ∇ f (Pk+1)−∇ f (Pk).

When the derivatives of the objective function are not available, the modifications
introduced by Stewart [849] can be used. The Davidon-Fletcher-Powell method has
been used as a local search component in hybrid local-global optimization algo-
rithms, for instance in [29, 336, 510, 515].

3.5.2.4 Trust-Region Strategy: NEWUOA

In this category of methods, the objective function is approximated by a local model
defined over a neighborhood of the current best solution. The quality of this model
is trusted only in this neighborhood, therefore the name trust region [142].

A trust-region method works as follows: At any iteration, a model of the objective
function is defined over a trust region of a certain radius. The trust region is centered
on the current best-so-far solution Pk. A trial point sk is then generated such that
a new point Pk + sk sufficiently reduces the model, and it is still within the trust
region. An evaluation of the objective function at Pk +sk is performed, and the value
returned is compared to the prediction of the model. If the prediction is sufficiently
accurate, the new point is accepted as the new best-so-far solution, and the next

3 Local Search 41

iteration is executed. In the next iteration, the trust-region radius can be larger or
equal to the one used in the previous iteration. However, if the prediction is not
sufficiently accurate, the new point is rejected and the next iteration is executed
with a reduced trust-region radius.

Existing trust-region methods differ in the way they define the model of the ob-
jective function, the criteria used to accept a new solution, and the way they update
both the model and the trust-region radius. Here, we briefly describe a state-of-
the-art trust-region method for unconstrained continuous optimization. This method
is called NEWUOA (NEW Unconstrained Optimization Algorithm) [730]. For ap-
proximating an n-dimensional objective function, NEWUOA uses a quadratic in-
terpolation of O(n) points within the trust region (a common value being 2n + 1
points). It is possible to use a linear number of interpolation points if the Hessian of
the model changes as little as possible from one iteration to the next. Once the model
is computed, it is minimized using a truncated conjugate gradient method [952]. The
point that minimizes the model is accepted if some conditions on the accuracy of the
interpolation and the trust region size are met. Besides the number of interpolation
points, the initial and final trust region radii are parameters of the method.

Trust-region methods have been applied in the context of global optimization
in [682, 687, 878, 956]

3.5.2.5 Other Methods

The family of methods described in the previous section have been the most com-
mon choice for performing local search in memetic and other hybrid local-global
search continuous optimization algorithms. However, in principle, any method that
explores a solution’s neighborhood can be used as a local search mechanism. In fact,
there are several hybrid algorithms proposed in the literature that use algorithms that
can be used as global optimizers. Interestingly, the main distinctive feature of these
mechanisms is that they belong to the class of stochastic local search methods (cf.
Section 3.5.1).

Examples of this approach are Solis and Wets’ minimization technique [834],
which is used, for example, in [383, 528, 607]. The covariance matrix adaptation
evolution strategy [361] (a state-of-the-art continuous optimization technique at the
time of writing) has been used as a local search method in [607, 608, 643]. A particle
swarm optimization algorithm [457] has been used with genetic algorithms [326] to
refine elite solutions [436]. Simulated annealing [468] has been also used as a local
search method in [658]. As a final example, we want to mention the simultaneous
perturbation stochastic approximation method [838], which has also been used as a
gradient-estimation local search method in [515].

Acknowledgements. The authors thank Thomas Stützle for his help in early drafts of this
chapter. This work was supported by the META-X project, an Action de Recherche Con-
certée funded by the Scientific Research Directorate of the French Community of Belgium,
by Spanish MICINN under project NEMESIS (TIN2008-05941) and Junta de Andalucı́a un-
der project TIC-6083, and by the Academy of Finland, Akatemiatutkija 130600, Algorithmic
Design Issues in Memetic Computing.

	Local Search
	Basic Concepts
	Neighborhoods and Local Optima
	Classifications of Local Search
	Local Search in Combinatorial Domains
	Hill Climbing
	Simulated Annealing
	Tabu Search

	Local Search in Continuous Domains
	Classification of Local Search Techniques for Continuous Domains
	Commonly Used Local Search Techniques in Memetic Algorithms for Continuous Domains

