A first approach to study the effects of direct
information exchange between agents in ant-based
clustering

Marco A. Montes de Oca, Leonardo Garrido and José L. Aguirre
Centro de Sistemas Inteligentes
Tecnolégico de Monterrey
Eugenio Garza Sada 2501, Col. Tecnolégico, Monterrey, N.L. México C.P. 64849
Email: {A00788072, leonardo.garrido, jlaguirre} @itesm.mx

Abstract— This paper presents a first approach to study direct
information exchange between agents in ant-based clustering
by comparing the clustering process development generated
by agents that maintain a short-term memory against the
one generated by agents that share their memory with their
peers whenever an encounter occurs on the environment. The
information exchange can allow an agent to “change its mind”
regarding the most favorable dropping location on the grid, based
on the knowledge of another agent.

Our experimental evidence shows that this simple information
exchange strategy improves the quality of the resultant clustering.
This holds true, however, only for a small number of agents.
This suggests that there is a critical number of agents that can
exchange information, that when surpassed, the effects could even
be detrimental.

I. INTRODUCTION

Insect species are considered eusocial when overlapping
generations of parents and offspring live together in an or-
ganizational unit or colony, division of labor occurs within
the colony, and when they develop a physical structure or nest
to live in. Ants, termites and some bee and wasp species are
considered eusocial [1].

In eusocial insects, different activities are performed simul-
taneously by specialized individuals. This division of labor can
be seen in activities such as nest cleaning and brood care. For
example, when dead bodies of nestmates and defeated enemies
are scattered around the nest entrance of some ant species such
as Pogonomyrmex badius and Lasius niger, worker ants create
piles of their corpses on a distant spot away from it [2], [3].
Another example is brood care which is a highly specialized
activity that require, in some cases, the separation of larvae
according to their development stage. In experiments, the ant
Leptothorax unifasciatus gather its larvae together according
to their size. Small larvae are aggregated near the center of a
plate and larger larvae near the periphery [3].

All these collective behaviors and many others exhibited
by social insects are the outcome of a process of self-
organization [4]. Bonabeau et al. [3] define self-organization
as “a set of dynamical mechanisms whereby structures appear
at the global level of a system from interactions among its
lower-level components” (p. 9). They also identify four basic

elements of self-organization, which are positive feedback,
negative feedback, the amplification of fluctuations, and the
existence of multiple interactions. In the cases of ant corpse
piling and brood sorting there is a factor that mediates the self-
organization process. This factor is known as stigmergy. First
proposed by Grassé (cited in [4]) to explain the construction
of nests by the termites Cubitermes and Macrotermes. Grassé
observed that when workers of Macrotermes bellicosus were
placed in a container with some soil pellets, the insects carried
about and put down pellets in an apparently random fashion
after an exploration phase where they moved through the
container without taking any action. At this stage, a pellet just
put down by a termite worker is often picked up and placed
somewhere else by another worker. When a pellet is placed on
top of another, the resultant structure appears to be much more
attractive and termites soon start to pile more pellets nearby,
making the dropping spot even more attractive [2]. Stigmergy
then, is the indirect influence on the behavior of others through
local environment modifications.

Inspired by corpse aggregation, brood sorting and nest
building in colonies of social insects, computer scientists have
created clustering algorithms for exploratory data analysis
where insects are simulated by simple reactive agents that
act in a two-dimensional grid. The basic clustering algorithm
makes use of stigmergy as the only mean of communication
between agents [5], [6].

Nevertheless, stigmergy is not the only way social insects
interact with each other. In most species, trophallaxis or
liquid food exchange among members of the same colony,
plays a key role in their social organization [2]. Consider
the case of some termite species which require intestinal
protozoa to derive benefits from cellulose. Their early instar
nymphs are fed either by oral or anal trophallaxis. The latter
infects them with symbiotic protozoa or bacteria contained
in the proctodeal liquid. The subsocial association result of
this codependence have evolved into a complex social and
morphological structure [1].

Inspired by the oral trophallaxis phenomenon, we present
a first approach to study the effects of direct information
exchange between agents in ant-based clustering algorithms.

We compare the clustering process development generated by
the Lumer and Faieta [6] algorithm that uses a short-term
memory with an extension of it where information exchange
between agents is possible. We provide experimental evidence
that show the advantages of direct information exchange in
the quality of the clustering obtained.

The remaining of this paper is organized as follows. In
section II previous work on ant-based clustering using stig-
mergy as the only mean of communication between agents
is presented. Section III describes the model of information
exchange used. Section IV details the experimental strategy
used to measure the effects of introducing information ex-
change into the basic ant-based clustering algorithm. Section V
presents the experiments results. In section VI we analyze the
experiments results and discuss the implications of the intro-
duction of information exchange bewteen agents in ant-based
clustering algorithms. Finally, in section VII we conclude and
speculate on future extensions and ideas to study the impact
of information exchange in ant-based clustering algorithms.

II. PREVIOUS WORK
A. Spatial sorting

Ant-based clustering was introduced by
Deneubourg et al. [5] using a model for spatial sorting.
A group of agents exhibiting the same behavior move
randomly over a toroidal square grid. In the environment
there are objects that were initially scattered in a random
fashion. The objects can be picked up, moved or dropped
in any free location on the grid. An object is picked up
with high probability if it is not surrounded by other objects
of the same type and is dropped by a loaded agent if its
neighborhood is populated by other objects of the same
type and the location of the agent has no object on it. The
probability p, with which an object is picked up is given by

— kl ?
ﬂr—<k1+f) (1)

where k1 is a constant and f is considered to be a measure of
similarity of the agent’s neighborhood with the object at the
agent’s current location. If the object is surrounded by objects
of the same type, then f should be large in comparison with &1
in order to make p, small. On the other hand, if the object is
not surrounded by any object of the same type, then f should
be small making p, high. The probability p; for an agent to
deposit an object is given by

(1Y
o

where ko is another constant. If the agent’s neighborhood is
populated by objects of the same type as the object it is
carrying, then f should be large in comparison with ks in
order to make py approach 1. On the other hand, if the agent
is not surrounded by any object similar to its load, then f
should be small making p; small. As expected, pg has an
opposite behavior than p,,.

Having a robotic implementation in mind, Deneubourg et
al. [5] proposed to compute f through a short-term memory
each agent maintains. Keeping track of the last 7' time units,
an agent counts the number of objects it finds; f is the number
of objects of a particular type encountered by the agent in the
last T' time steps divided by the maximum number of objects
an agent can find in 7' time units.

B. Exploratory Data Analysis

Exploratory data analysis tries to identify structures and
relationships within data and cluster analysis is one possible
approach to do so. In cluster analysis, the main problem is
that of finding a partition of a data set so that similar objects
end up in the same class or cluster [7].

Lumer and Faieta [6] generalized the spatial sorting al-
gorithm to apply it to exploratory data analysis specifically,
through the creation of clusters of related data. All classical
clustering algorithms depend on a similarity or dissimilarity
measure to determine whether two objects are similar or not.
This algorithm is no exception. However, instead of taking
as input a similarity or dissimilarity matrix, this algorithm
starts with something very similar to what we described in
the preceding section. A group of agents moving randomly
on a toroidal square grid. On the grid, data elements scattered
randomly that can be picked up, moved or dropped by the
agents. This time however, the probabilities are computed
differently. The probability of picking a data element ¢ is

defined as
o k) ;
p“”_(%+f@) ©

where kj, is a constant and f (%) is a similarity density measure
with respect to element ¢. Likewise, the probability of dropping
a data element is given by

pa(i) = { ?f(i)

where kg is a constant. The similarity density f(i) for an
element ¢, at a particular grid location 7, is defined as

1 d(i,j) .
f(i) = { (;_ZZjeNeigh(r) (1 - TJ) it f>0)

otherwise

if £(i) < kg
otherwise

“

where s? is the size of the perception area centered at
the location of the agent and « is a scaling factor of the
dissimilarity measure d(i,j) between elements ¢ and j. If it
is assumed that the elements can be represented as points in
an n-dimensional space, then the Euclidean distance could be
used as dissimilarity measure.

In experiments, Lumer and Faieta [6] showed that the
algorithm was capable of correctly classifying elements of
a synthetic data set; however, the number of clusters found
was, in general, greater than the number expected. To fix
this problem, they proposed three modifications to the basic
algorithm.

The first modification was the introduction of variability into
the agent population. The element of change was the velocity

of displacement. With this modification, velocities are in the
range [1, Vinqz] and represent the number of grid positions the
agent can move in a single time unit along a given direction
vector. This variability was coupled to the sensitiveness of
each agent to dissimilarity in the following way

: d(i»j) -
fy=4 # ZjENeigh(-r) (1 - m) it f>0

Vmaz

0 otherwise
(6)

The result is that an agent moving slowly will be more
selective in their similarity criterion than an agent moving
rapidly. The effect of this variability is that the number of
final clusters is closer to the expected than the model with
homogeneous agents. Fast moving agents appear to create
clusters in a coarser scale than slowly moving agents which
place data elements more carefully.

The second modification was the introduction of a short-
term memory into the agents so that they could keep track
of the dropping location of the last m elements the agent
had carried. This modification has the effect of lowering
the probability that a just picked up element can create an
independent cluster by itself, thus reducing the final number
of clusters. This happens because every time an agent picks
an element, it looks in its memory for the location of the
closest element in attribute space. The agent, instead of moving
randomly, moves directly towards that particular location.

The third modification was the inclusion of behavioral
switches. If an agent has not manipulated an item for a
predetermined number of time units, it starts destroying the
so far created clusters. This does not end up in a total cluster
destruction because other agents, that have not reached that
state, will reposition the disseminated objects.

C. Clustering Validation

In an effort to formally evaluate the clustering quality of
ant-based algorithms, Handl et al. [8] applied four validity
measures to the resulting clustering of a modified version of
the Lumer and Faieta [6] algorithm. Two of them are external
validity coefficients, meaning that they rely on a pre-defined
structure which is imposed on a data set and reflects our
intuition about the clustering structure of that data set. The
other two coefficients are internal validity measures. In this
case the clustering results are evaluated using only the data
vectors available in the data set. For the interested reader, the
modifications introduced by Handl et al. can be found in [9].

The four validity measures used by Handl et al. [8] were :

o External validity coefficients. Let C = C1,C5,...,Cph,

be a clustering structure of a given data set X and
P = P,P,...,P, a defined partition of X. A pair
(xy,Xy) € X x X is refered as
— SS. If both points belong to the same cluster in C
and to the same partition in P.
— SD. If both points belong to the same cluster in C
but to different partitions in P.
— DS. If both points belong to different clusters in C
but to the same partition in P.

— DD. If both points belong to different clusters in C

and to different partitions in P.

If a,b, c and d are the number of pairs SS,SD, DS and
DD respectively, then a+b+c+d =M = N(N—1)/2,
that is, the maximum number of possible distinct pairs.
The two external validity coefficients used are:

1y

2)

The harmonic mean of recall and precision, also
known as the F-Measure. Commonly associated to
the information retrieval field, recall and precision
are measures that give us some idea of how well
a clustering algorithm is identifying the classes
present in a database [10].

Let rec(i, j) be the recall of cluster j with respect
to partition 4. Then, rec(i, j) = |C; () P;|/|P;|. The
precision of cluster j with respect to partition 4
is defined as pre(i,j) = |C;(F;|/|C;|. The F-
measure is defined as

_ 2pre(i, j) rec(i, j)

- pre(i,j) + rec(i, j)

The overall F-Measure for a given clustering is

i,3

m
P.
F=>Y" |z\;| mazj=1,. n{Fi;} @)

i=1

The F-Measure takes the value of 1 when a perfect
match between the clustering and the given partition
occurs.
The Rand Statistic. It is defined by
a+d

a+b+c+d ®
The Rand statistic is limited to the interval [0, 1]
with a value of 1 with a perfect clustering.

« Internal validity coefficients.

Y

2)

The intra-cluster variance. This measure tries to
capture the idea that members that belong to the
same cluster should be as close to each other as
possible. It is given by

n
I=%"3%"lp—ml ©)
i=1 peC;

where n is the total number of groups in the
partition generated by the clustering algorithm, and
1; is the centroid of group 4. This measure is to be
minimized.
The Dunn index. This measure will give a high
value whenever the partition gives compact and well
separated clusters. It is given by

lltte — prall
maxeec{diam(e)}} (10)

where p; is the centroid of cluster ¢ and diam(3) is
the diameter of cluster 4 which could be considered
a dispersion measure. It is defined as

D = min
c,deC

diam(c) = max{[|z — yl[}
T,y€c

In this investigation we used these validity measures to
evaluate the effects of information exchange between agents
during the clustering process.

III. INFORMATION EXCHANGE

In all previous attempts to do clustering tasks using a
simulated insect colony there is no direct interaction among
agents. This is perhaps due to the fact that early works
on ant-based clustering and sorting were focused on robotic
implementations [4], [5], [11], [12] where direct real-time
communication is much more complicated than in software
simulations.

As a first approach to study the effects of direct information
exchange between agents in ant-based clustering, we introduce
a modification to the model of clustering ant proposed by
Lumer and Faieta [6] that uses a short-term memory to bias an
agent’s search for a dropping location. In the original model,
every agent has a memory in which it stores the m most
recent elements dropped along with their locations. When a
new element is picked up, it is compared with the elements in
memory. After that, the ant moves directly towards the location
of the most similar element in its memory.

The model used in our approach uses as analogy the
oral trophallaxis phenomenon among nestmates in colonies
of social insects. Whenever a group of agents coincide on
the grid, a loaded agent of that group exchanges knowledge
with its peers about the environment state. In general, the
main purpose of this exchange is to better approximate the
current environment state in order to bias an agent search for
better dropping locations. In other words, a loaded agent can
“change its mind” more than once regarding the most favorable
dropping location, based on the knowledge of other agents.

The knowledge exchange is done by allowing an agent look
into its peers short-term memories for a closer object to its load
than the object that was guiding it on its search. If it finds it,
then it redirects itself towards the location of that object.

IV. EXPERIMENTAL SETUP
A. Test Data

To evaluate the impact of the introduction of basic in-
formation exchange between agents we used two real data
collections from the UCI Machine Learning Repository [13].
These were :

o Iris Plant Database. Composed of 150 instances with
4 numeric attributes each. There are 3 classes in the
database composed of 50 instances each. Of these, one is
linearly separable from the other two; the latter are not
linearly separable from each other.

« Wine Recognition Database. Composed of 178 instances
with 17 numeric attributes each. There are 3 classes in
the database where class 1 has 59 instances, class 2 has
71 instances, and class 3 has 48 instances.

To eliminate the bias on similarity measures provoked by
different scales within data attributes, we standardized all data
sets. The similarity measure used in all our experiments was
the cosine metric because it is commonly used when dealing

with real databases and gave better results than Euclidean
distance in preliminary tests.

B. Ant Model

The agents picking and dropping probabilities were com-
puted using expresions 3 and 4 respectively. However, because
the cosine metric is a similarity measure, expresion 5 is not
applicable. Therefore, for the local similarity density f (i), we

used
Z (i
] _Sg_l'_D

JjENeigh(T)

where S is the steepness of the response curve and D serves
as a displacement factor. In our experiments we fixed S to
5 because it provides a similarity value close to 0 when the
cosine measure is minimum, that is, when the cosine mesure
gives a value of —1, and D to 1 because this allows us to better
distinguish vectors with separation angles between 0 and /2.
The resultant similarity response surface is shown in figure 1.

Equation 11 permits the integration of simple background
knowledge. In particular, if it is known that data classes are
difficult to separate, one can move the displacement factor
near the maximum value of the similarity measure to better
discriminate among very similar data elements. This expres-
sion also has the advantage of limiting the range of values «
can take to (0, 1], given that —1 < d(4,5) < 1, as is the case
for the cosine metric.

(1)

<
522>
e
P
e
GRreserseeesrs
e
O e e
222

L 7
LI 1177757
R, 777
Voostosy, IANpfREII 7=
LR
|
=l
=
= 0y

27
27T
L
LN
-=~.z.~.~.~.z«'.'.g‘£,!l£!
=
=

e
(e

Saasea
=3 e

==

ST
SIS
SRR RERLLIA N
S

==

Fig. 1. Similarity response surface. Similarity response defined as a function
of the cosine metric between two data elements and the scaling factor . Taken
from the similarity component of equation 11 where S =5 and D = 1.

Table I summarizes all other agent settings used in our
experiments. These settings were selected because they proved
acceptable with both databases.

C. Experiments Design

To observe the effects of information exchange between
agents on the clustering process, we applied the four measures
used by Handl et al. [8] and mentioned in subsection II-
C every 10000 simulation cycles to the partial clustering
hitherto obtained. Each simulation cycle was composed of N
individual actions, where N is the number of agents in the

TABLE I
AGENT SETTINGS

Parameter || Value |
kp 0.1
kq 0.15
a 0.7
Neighborhood size 5X5
Short-term memory size 8

simulation. We ran both, Lumer and Faieta algorithm and ours
30 times with every database for 1000000 simulation cycles.

In our experiments, information exchange only occurs
whenever two or more agents meet at a point on the grid.
We can expect therefore, that the probability of an encounter
raises as the number of agents is increased, or more precisely,
as the agents density of the environment increases. The agents
density can be modified either by changing the number of
agents or changing the environment dimensions. We chose
to change only the number of agents because changing the
environment dimensions would also result in a modification of
the data density which would have introduced another factor to
take into account. By having more agent encounters over time,
the effects of information exchange should have more impact.
We tried with populations of 10, 20 and 30 agents within an
environment of 100 x 100 locations in all of our experiments.
Considering we tried with databases with an average of 160
elements each, incrementing the number of agents beyond 30
would have provoked scarcity of data elements on the grid and
would have reduced artificially the number of clusters found,
thus making the task of discovering patterns on data more
difficult.

To collect information from the spatial partition formed
by the agents on the grid, we applied an agglomerative
hierarchical algorithm on the data using Euclidean distance
and the single linkage strategy. The maximum distance to
merge clusters was set equal to the size of the agents neigh-
borhood. The distance used to compute the variance and the
clusters diameters in the attribute space was also the Euclidean
distance.

V. RESULTS

Results of the Lumer and Faieta algorithm and our modified
version on the test databases are summarized and presented
grouped by validity measure. In order to better observe the
performance difference between the two algorithms when
varying the number of agents, the plots show the resulting
curve of substracting the evaluations for the algorithm without
communication from the evaluations for our version. Subsec-
tion V-E presents the results of the number of clusters found.
Results with 20 agents are skipped because, in all cases, they
showed a behavior in between the results with 10 and 30
agents.

io agems‘

30 agents -

F Measure

.
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06
Simulation cycles

(a) Iris database

io agems‘
30 agents -

F Measure

.
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06
Simulation cycles

(b) Wine database

Fig. 2. Relative F'-Measure scores over time for the short-term memory
algorithm with information exchange on the Iris Plant and the Wine databases
using 10 and 30 agents. The 0 value serves as reference and corresponds to
the evaluations for the algorithm without information exchange.

A. F-Measure

Figure 2 shows the relative F'-Measure values over time for
both algorithms on the Iris Plant and Wine databases using
10 and 30 agents. In both cases, it can be seen that the
algorithm with information exchange has a higher score than
the algorithm without information exchange after a certain
number of simulation cycles. Moreover, the relative difference
between the algorithms when increasing the number of agents
is evident. The relative F'-Measure score is better when using
10 agents.

B. Rand Statistic

The relative Rand statistic scores over time for both algo-
rithms on the Iris Plant and Wine databases using 10 and 30
agents are shown in figure 3.

In figure 3 almost the same situation than that of the F-
Measure can be observed, i.e., with 30 agents the performance
is worse than with only 10 agents and than the performance of
its counterpart without information exchange. This can be seen

io agems‘
30 agents -

Rand statistic
o

-0.05 - 4

0.15 |- 4
0.2
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06
Simulation cycles
(a) Iris database
0.2 T T
10 agents
30 agents -
0.15 |- B
0.1 |
0.05 |-
o
i
T
i 0
°
2
<3
<
-0.05 |- 4
-0.1 B
-0.15 4

02 L L L L L L L L L
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

Simulation cycles

(b) Wine database

Fig. 3. Relative Rand statistic scores over time for the short-term memory
algorithm with information exchange on the Iris Plant and the Wine databases
using 10 and 30 agents. The 0 value serves as reference and corresponds to
the evaluations for the algorithm without information exchange.

in subfigure 3(a) where the line corresponding to the algorithm
with information exchange using 30 agents is below the zero
line.

C. Intra-cluster Variance

In order to be consistent with figures 2 and 3, i.e., values
above the zero line meaning good performance, in figure 4 the
curves were obtained by substracting the intra-cluster variance
obtained by the algorithm version with information exchange
from the intra-cluster variance obtained by the algorithm
without information exchange.

Figure 4 shows how the total intra-cluster variance gap
between the two versions gets smaller as the number of agents
increases. In the Iris database (fig. 4(a)), the curves even swap
positions making the information exchange version with 30
agents the worst.

D. Dunn index

Figure 5 shows the relative Dunn index scores for both
algorithms with 10 and 30 agents on the two test databases. In

140

‘10 agenls‘
30 agents -

120

100

intra-cluster variance

N

60 L L L L L L L L L
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

Simulation cycles

(a) Iris database

300

‘10 agents‘
30 agents -

intra-cluster variance

100 L L L L L L L L L
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

Simulation cycles

(b) Wine database

Fig. 4. Relative total intra-cluster variance over time of the short-term
memory algorithm with and without information exchange on the Iris Plant
and the Wine databases using 10 and 30 agents. The 0 value serves as
reference and corresponds to the evaluations for the algorithm without
information exchange.

this case, the performance of the short-term memory algorithm
without information exchange is better in the Iris database and
worse in the Wine database compared with the information
exchange algorithm using 10 agents.

Figure 5 also shows that the performance of the information
exchange algorithm using 30 agents is better in the Iris
database and almost the same in the Wine database compared
with the short-term memory algorithm. This behavior can be
explained if we recall that in the Iris database two clusters
are not linearly separable, thus making the algorithm consider
them as one. This clearly increases the measure that tries to
identify compact and well separated clusters.

E. Number of clusters

One of the main features that make ant-based clustering
an appealing approach to clustering is that it is capable, on
average, of finding the correct number of clusters within the
data. This is confirmed in figures 6 and 7.

io agems‘
30 agents -

Dunn index

02 L L L L L L L L L
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

Simulation cycles

(a) Iris database

io agems‘
30 agents -

0.1 | 4

Dunn index

02 L L L L L L L L L

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06
Simulation cycles

(b) Wine database

Fig. 5. Relative Dunn index scores over time for the short-term memory
algorithm with and without information exchange on the Iris Plant and the
Wine databases using 10 and 30 agents. The O value serves as reference and
corresponds to the evaluations for the algorithm without information exchange.

Figure 7 shows how the number of clusters decreases as the
number of agents increases. The information exchange version
has a slower decay rate.

VI. DISCUSSION

The probability of an encounter between two agents moving
randomly raises as the number of agents is increased. This
is confirmed in robotic experiments [4] where it has been
reported that the number of collisions between robots raises
as the number of robots is increased. In our experiments, we
tried to take advantage of this fact and use it to study the
effect of increasing the information exchange rate between
agents. However, the actual effect of information exchange
depends not only on the frequency of encounters but also on
their effectiveness; that is, information exchange is beneficial
as long as the information exchanged is useful. In our ap-
proach, usefulness depends very much on how well an agent’s
memory represents the current environment state. Early in
the clustering process this is not accomplished because of

8
4 i Sho‘rt-tevm mémory wwm‘to agents‘

Direct information exchange with 10 agents -------
Clusters in Iris database --------

Number of clusters detected
IS
T

0 L L L L L L L L L
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

Simulation cycles

(a) Iris database

8
\ i Short-term mémory with 10 agents‘

Direct information exchange with 10 agents -------
Clusters in Wine database --------

Number of clusters detected
IS
T

0
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06
Simulation cycles

(b) Wine database

Fig. 6. Number of clusters found by the short-term memory algorithm with
and without information exchange on the Iris Plant and the Wine databases
using 10 agents. As a reference, the correct number of clusters is shown.

the high environment dynamism. When this phase finishes,
once that some initial clusters exist, information exchange is
more effective as the environment is less dynamic. This in part
explains the relatively poor performance of the information
exchange model over the first simulation cycles.

Our results suggest that even by just sharing memorized
dropping spots, information exchange offers some advantages
over the model that relies on stigmergy as the only mean
of interaction among agents. In particular, the quality of the
clustering generated is improved and this is reflected by the
F-Measure, Rand index and intra-cluster variance scores. This
holds true, however, only when the number of agents is small.
This fact suggests that there is a critical number of agents that
can exchange information, that when surpassed, the effects
could even be detrimental. Despite this, information exchange
could be useful when one cannot afford the computational
costs associated with increasing the number of agents in a
clustering task.

T T ; . .
Short-term memory with 30 agents

Direct information exchange with 30 agents -------
Clusters in Iris database --------

Number of clusters detected
IS

0 L L L L L L L L L
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

Simulation cycles

(a) Iris database

T T - . .
Short-term memory with 30 agents

Direct information exchange with 30 agents -------
Clusters in Wine database --------

Number of clusters detected
IS
T

0 L L L L L L L L L
0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

Simulation cycles

(b) Wine database

Fig. 7. Number of clusters found by the short-term memory algorithm with
and without information exchange on the Iris Plant and the Wine databases
using 30 agents. As a reference, the correct number of clusters is shown.

VII. CONCLUSIONS AND FUTURE WORK

The information exchange schema explored in this paper is
just an extension of the Lumer and Faieta [6] ant model that
provides an agent with a short-term memory to bias its search
for a dropping location. The extension consists basically on
allowing the agents to explore each other’s memories whenever
they meet at a point on the grid. The result is that when an
agent is in search for a dropping location, it can change its
trajectory based on the knowledge of other agents.

There are many possibilities to explore direct communi-
cation among agents in ant-based clustering. In all of them
one has to determine what information to exchange; how to
exchange this information, and when is most appropriate to do
so. Some of this aspects have been investigated in the robotics
field, and although their results are important, they are not
directly aplicable to software implementations where physical
restrictions need not be considered. The potential benefits of
direct communication to ant-based clustering are important in
a time where the volume of available electronic information is
overwhelming and when organizations need to extract useful

knowledge from it.

Let us emphasize that the study of direct communication
in ant-based custering algorithms does not mean the aban-
donment of the swarm intelligence paradigm because direct
communication do happen in the biological inspiration model,
i.e., insects colonies.

Our future efforts will be focused on exploring different
information exchange strategies that, while keeping the agents
simple, could provide improvements in the quality of the
resulting clustering of ant-based clustering algorithms. Among
these, the exploration of indirect information exchange through
deposition of packets of information on the environment
inspired by anal trophallaxis, and the exchange of “maps” that
are built while an agent is moving around the environment.

ACKNOWLEDGMENT

The authors would like to thank Julia Handl for clarifying
some aspects of her work. To César Marin and Eduardo H.
Ramirez for their comments about early drafts of this paper.

This research has been supported by the Technologies
for Distributed Knowledge and Intelligent Agents Research
Programme CAT-011. Tecnolégico de Monterrey, Campus
Monterrey.

REFERENCES

[1]1 R.J. Elzinga, Fundamentals of entomology. Prentice Hall, 2000.

[2] E. O. Wilson, The Insect Societies. The Belkap Press of Harvard
University Press, 1971.

[3] E. Bonabeau, M. Dorigo, and G. Theralauz, Swarm Intelligence. From
Natural to Artificial Systems. Oxford University Press, 1999.

[4] O. Holland and C. Melhuish, “Stigmergy, self-organization, and sorting
in collective robotics,” Artificial Life, vol. 5, pp. 173-202, 1999.

[5] J.-L. Deneubourg, S.Goss, N. Franks, A. Sendova-Franks, C. Detrain,
and L. Chretien, “The dynamics of collective sorting: Robot-like ants and
ant-like robots,” in Proceedings of the First International Conference on
Simulation of Adaptive Behavior: From Animals to Animats, pp. 356—
365, MIT Press, 1991.

[6] E.D. Lumer and B. Faieta, “Diversity and adaptation in populations of
clustering ants,” in Proceedings of the Third International Conference on
Simulation of Adaptive Behavior: From Animals to Animats 3, pp. 501—
508, MIT Press, 1994.

[71 A. D. Gordon, Classification. Monographs on statistics and applied
probability 82, Chapman & Hall/CRC, second ed., 1999.

[8] J. Handl, J. Knowles, and M. Dorigo, “On the performance of ant-
based clustering.” Design and application of hybrid intelligent systems.
Frontiers in Artificial Intelligence and Applications 104. IOS Press,
Amsterdam, The Netherlands, 2003.

[9] J. Handl, J. Knowles, and M. Dorigo, “Ant-based clustering: a compar-
ative study of its relative performance with respect to k-means, average
link and 1d-som,” Tech. Rep. TR/IRIDIA/2003-24, IRIDIA, Universite
Libre de Bruxelles, Belgium, 2003.

[10] S.M. zu Eissen and B. Stein, “Analysis of clustering algorithms for web-
based search,” in Practical Aspects of Knowledge Management LNAI
2569, pp. 168-178, 2002.

[11] A. Martinoli and F. Mondada, “Collective and cooperative group be-
haviours: Biologically inspired experiments in robotics,” in Proceedings
of the Fourth International Symposium on Experimental Robotics ISER-
95 (O. Khatib and J. Salisbury, eds.), pp. 3—10, Springer Verlag, 1995.

[12] C. R. Kube and H. Zhang, “Collective robotic intelligence,” in Second
International Conference on Simulation of Adaptive Behavior, pp. 460—
468, 1992.

[13] C. Blake and C. Merz, “UCI repository of machine learning databases
[http://www.ics.uci.edu/~mlearn/mlrepository.html],” 1998.

