University of Delaware Department of Mathematical Sciences

MATH-243 – Analytical Geometry and Calculus C Instructor: Dr. Marco A. MONTES DE OCA Fall 2012

Homework 1

Due date: September 10, 2012

Problems

Taken, adapted or inspired by problems in Sections 12.1 and 12.2 of the book *Calculus: Early Transcendentals* 7th edition by J. Stewart.

- 1. What does the equation $y = x^2$ represent in a two-dimensional space (denoted by \mathbb{R}^2)? What does it represent in a three-dimensional space (\mathbb{R}^3)? Illustrate with sketches.
- 2. Find the distance from (1, 1, -5) to each of the following.
 - (a) The xy-plane
 - (b) The point (0, 1, 10)
 - (c) The plane z = 2
 - (d) The *x*-axis
 - (e) The plane z = 0
 - (f) The z-axis
- 3. Find an equation of the sphere that passes through the point (6, -2, 3) and has center (-1, 2, 1).
- 4. Suppose $\vec{a} = \langle 2, -1, 1 \rangle$, $\vec{b} = \langle 1, -3, -2 \rangle$, and $\vec{c} = \langle -2, 1, -3 \rangle$. Write $\vec{r} = \langle 1, 3, 2 \rangle$ as a linear combination of $\vec{a}, \vec{b}, \vec{c}$; that is, find scalars α, β, γ such that $\vec{r} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}$.
- 5. Find a vector \vec{a} with representation given by the directed line segment \vec{AB} . Draw \vec{AB} and the equivalent representation, that is \vec{a} , starting at the origin.
 - (a) A(-1,1), B(3,-1)
 - (b) A(-2,0,4), B(1,2,1)

- 6. Suppose $\vec{a} = \langle 3, -1, -4 \rangle$, $\vec{b} = \langle -2, 4, -3 \rangle$, and $\vec{c} = \langle 1, 2, -1 \rangle$. Find $2\vec{a} \vec{b} + 3\vec{c}$, $||\vec{a} + \vec{b} + \vec{c}||$, $||3\vec{a} 2\vec{b} + 4\vec{c}||$, and a unit vector parallel to $3\vec{a} 2\vec{b} + 4\vec{c}$.
- 7. Show that the vectors $\vec{a} = \langle 3, 1, -2 \rangle$, $\vec{b} = \langle -1, 3, 4 \rangle$, and $\vec{c} = \langle 4, -2, -6 \rangle$ can form the sides of a triangle.
- 8. If \vec{a} lies in the first quadrant and makes an angle $\pi/3$ with the positive x-axis and $||\vec{a}|| = 5$, find the x and y components of \vec{a} .
- 9. Find the unit vectors that are parallel to the tangent line to the curve $y = 2\sin(x)$ at the point $(\pi/6, 1)$.
- 10. Suppose the midpoints of the consecutive sides of a quadrilateral are connected by straight lines. Using vectors, verify that the resulting quadrilateral is a parallelogram.