University of Delaware Department of Mathematical Sciences

MATH-243 – Analytical Geometry and Calculus C Instructor: Dr. Marco A. MONTES DE OCA Fall 2012

Solution Exam I

September 20, 2012

Problems

1. [20 points] Suppose $\vec{a} \cdot \vec{b} = 8$ and $\vec{a} \times \vec{b} = 12\hat{i} - 3\hat{j} + 4\hat{k}$. If the angle between \vec{a} and \vec{b} is θ , find $\tan \theta$.

Solution:

Considering that $\vec{a} \cdot \vec{b} = ||\vec{a}|||\vec{b}||\cos\theta = 8$ and that $||\vec{a} \times \vec{b}|| = ||\vec{a}|||\vec{b}||\sin\theta$, then $\tan\theta = \frac{||\vec{a} \times \vec{b}||}{\vec{a} \cdot \vec{b}}$.

Thus, $\tan \theta = \frac{||\vec{a} \times \vec{b}||}{\vec{a} \cdot \vec{b}} = \frac{\sqrt{(12)^2 + (-3)^2 + (4)^2}}{8} = \frac{\sqrt{144 + 9 + 16}}{8} = \frac{13}{8}.$

2. [20 points] For what values of t are $\langle 2t, t, -1 \rangle$ and $\langle 4, 2, 1 \rangle$ orthogonal?

Solution:

If $\langle 2t, t, -1 \rangle$ and $\langle 4, 2, 1 \rangle$ are orthogonal, then $\langle 2t, t, -1 \rangle \cdot \langle 4, 2, 1 \rangle = 0$.

This means that $8t + 2t - 1 = 0 \rightarrow t = \frac{1}{10}$.

3. [20 points] Find an equation of the plane that contains the lines $\vec{r_1} = \langle 1, 1, 0 \rangle + t \langle 1, -1, 2 \rangle$ and $\vec{r_2} = \langle 2, 0, 2 \rangle + s \langle -1, 1, 0 \rangle$.

Solution:

Since the two lines lie in the same plane, the cross product of their direction vectors is perpendicular to the plane, a necessary ingredient to define a plane. Thus, if $\vec{a} = \langle 1, -1, 2 \rangle$ and $\vec{b} = \langle -1, 1, 0 \rangle$. then

$$\vec{n} = \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 2 \\ -1 & 1 & 0 \end{vmatrix} = -2\hat{i} - 2\hat{j} + 0\hat{k} = \langle -2, -2, 0 \rangle.$$

And a vector equation of the plane is given by $(\vec{r} - \vec{u}) \cdot \vec{n} = 0$ where $\vec{u} = \langle 1, 1, 0 \rangle$. Then, a scalar equation of the plane is $-2(x-1) - 2(y-1) + 0(z-0) = 0 \rightarrow x + y = 2$.

4. [20 points] Find a unit vector that is perpendicular to both $\vec{a} = \langle 3, 2, 0 \rangle$ and $\vec{b} = \langle -1, 0, 3 \rangle$.

Solution:

Such a vector is parallel to $\vec{n} = \vec{a} \times \vec{b}$. Now, given that

$$\vec{n} = \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 2 & 0 \\ -1 & 0 & 3 \end{vmatrix} = 6\hat{i} - 9\hat{j} + 2\hat{k} = \langle 6, -9, 2 \rangle.$$

The vector we are looking for is $\hat{n} = \frac{\vec{n}}{||\vec{n}||} = \frac{1}{\sqrt{36+81+4}} \langle 6, -9, 2 \rangle = \frac{1}{11} \langle 6, -9, 2 \rangle.$

5. [20 points] Find the area of the parallelogram spanned by $\vec{a} = \langle -1, 3, 1 \rangle$ and $\vec{b} = \langle 2, 0, 1 \rangle$.

Solution:

The area spanned by $\vec{a} = \langle -1, 3, 1 \rangle$ and $\vec{b} = \langle 2, 0, 1 \rangle$ is equal to $||\vec{a} \times \vec{b}||$. Now,

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 3 & 1 \\ 2 & 0 & 1 \end{vmatrix} = 3\hat{i} + 3\hat{j} - 6\hat{k} = \langle 3, 3, -6 \rangle.$$

Thus, the area is equal to $||\vec{a} \times \vec{b}|| = \sqrt{9+9+36} = \sqrt{54}$.

[Bonus problem: 10 points] If \vec{a} , \vec{b} and \vec{c} are non-zero vectors, does $\vec{a} \cdot \vec{b} = \vec{c} \cdot \vec{b}$ imply that $\vec{a} = \vec{c}$? Show that it is true in general, or disprove by providing an appropriate example. Solution:

If \vec{a} , \vec{b} and \vec{c} are non-zero vectors, $\vec{a} \cdot \vec{b} = \vec{c} \cdot \vec{b}$ does not imply that $\vec{a} = \vec{c}$.

This is shown through an example: Let $\vec{a} = \langle 1, 0, 0 \rangle$, $\vec{b} = \langle 1, 1, 1 \rangle$, and $\vec{c} = \langle 0, 1, 0 \rangle$. Then $\vec{a} \cdot \vec{b} = \vec{c} \cdot \vec{b} = 1$; however, $\vec{a} \neq \vec{c}$.