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Problems

1. [20 points] The vector ∇f(x, y) at a point P and four unit vectors ~u1, ~u2, ~u3, and ~u4 are shown in the figure
below. Arrange the following quantities in ascending order. Explain your reasoning.

D~u1
f(x, y), D~u2

f(x, y), D~u3
f(x, y), D~u4

f(x, y), 0.

The directional derivatives are all evaluated at the point P and the function f(x, y) is differentiable at P .

Solution: Since the directional derivative of a function f(x, y) at a point (x0, y0) in the direction of a unit vector
û is given by D~u1

f(x0, y0) = ∇f(x0, y0) · û, we can conclude from the figure that

D~u3
f(x, y) < D~u2

f(x, y) < 0 < D~u4
f(x, y) < D~u1

f(x, y).

2. [20 points] The temperature at a point (x, y) on a metal plate is modeled by

T (x, y) = e−(x
2+2y2)
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Find directions of no change in heat on the plate from the point (1, 1). [The answer should be at least one unit
vector that gives the direction of movement from (1, 1) such that no change in temperature is felt.]

Solution: Since the directional derivative in a direction perpendicular to the gradient is zero, then we just need
to find a unit vector perpendicular to the gradient ∇f(1, 1).

∇f(x, y) = 〈e−(x2+2y2)(−2x), e−(x
2+2y2)(−4y)〉 = −2e−(x

2+2y2)〈x, 2y〉
∇f(1, 1) = −2e−(1+2)〈1, 2〉 = −2e−3〈1, 2〉

Therefore, one vector perpendicular to ∇f(1, 1) is ~u = 〈−2, 1〉. Normalizing, we obtain the vector 〈− 2√
5
, 1√

5
〉.

The other unit vector that meets the requirements is 〈 2√
5
,− 1√

5
〉

3. [20 points] Use Lagrange multipliers to prove that the product of three positive numbers x, y, and z, whose sum
has the constant value S, is a maximum when the three numbers are equal. Use this result to prove that

3
√
xyz ≤ x+y+z

3 .

Solution: The first part is to maximize f(x, y, z) = xyz subject to x+ y + z = S. Using Lagrange multipliers,
we obtain:

∇f(x, y, z) = λ∇g(x, y, z)
〈yz, xz, xy〉 = λ〈1, 1, 1〉

The system of equation is therefore

yz = λ (1)
xz = λ (2)
xy = λ (3)
x+ y + z = S (4)

Since x > 0, y > 0 and z > 0, from (1) and (2) we conclude that x = y, and from (2) and (3) we conclude that
y = z. Thus, x = y = z (5), which is what we wanted to show. Note that this solution maximizes f(x, y, z)
because the minimum would be a solution with say x→ S, y → 0 and z → 0.

For the second part, if we consider that when x = y = z = S
3 the product xyz is maximum, then in general:

xyz ≤ (S3 )3

taking the cubic root to both sides of the equation: 3
√
xyz ≤ S

3

but since x+ y + z = S, we conclude that 3
√
xyz ≤ x+y+z

3 .

4. [20 points] Use a triple integral to find the volume of the solid shown in the figure.
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Solution: The volume of this solid can be calculated as:

V =
∫ 2

0

∫ 4−x2

0

∫ 4−x2

0
dz dy dx

V =
∫ 2

0

∫ 4−x2

0
(4− x2) dy dx

V =
∫ 2

0
4y − x2y

∣∣4−x2

0
dx =

∫ 2

0
(4(4− x2)− x2(4− x2)) dx =

∫ 2

0
(16− 4x2 − 4x2 + x4) dx =

∫ 2

0
(16− 8x2 + x4) dx

V = 16x− 8
3x

3 + 1
5x

5
∣∣2
0

= 32− 64
3 + 32

5 = 480−320+96
15 = 256

15

5. [20 points] A bead is made by drilling a cylindrical hole of radius 1mm through a sphere of radius 5mm. Find
the volume of the bead using a triple integral in cylindrical coordinates.

Solution: Place the bead’s center at the origin, and let the cylindrical hole be parallel to the z-axis. Let the
volume of the bead be V . Then by symmetry V

2 is the volume of the upper part of the bead. The volume of this
upper part can be calculated by

V
2 =

∫ 2π

0

∫ 5

1

∫√25−r2
0

r dz dr dθ

V
2 =

∫ 2π

0

∫ 5

1

√
25− r2r dr dθ

Using u = 25− r2, then du = −2r dr, so

V
2 = − 1

2

∫ 2π

0

∫ 0

24

√
u du dθ = 1

2

∫ 2π

0

∫ 24

0

√
u du dθ

V
2 = 1

2

∫ 2π

0
2
3u

3/2
∣∣24
0
dθ = 1

3

∫ 2π

0
(24)3/2 dθ

V
2 = (24)3/2

3 (2π), which means that V = 4(24)3/2π
3 = 64

√
6π.

[Bonus problem: 10 points] Find and classify all the critical points of f(x, y) = −x4 − y4 + 4xy − 2.

Solution:

fx = −4x3 + 4y
fy = −4y3 + 4x

If fx = fy = 0, then

x3 = y (1)
y3 = x (2)

(1) in (2):

(x3)3 = x
x9 − x = 0
x(x8 − 1) = 0

So x = 0 or x = ±1. Therefore, there are three critical points: (0, 0), (1, 1). and (−1,−1).

fxx = −12x2

fyy = −12y2

fxy = fyx = 4

So, det(H)(x, y) = 144x2y2 − 16.

For (0, 0), det(H)(0, 0) < 0, so (0, 0) is a saddle point.
For (1, 1), det(H)(1, 1) > 0, and fxx < 0 so at (1, 1) f has a local maximum.
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For (−1,−1), det(H)(−1,−1) > 0, and fxx < 0 so at (−1,−1) f has a local maximum.
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