## University of Delaware Department of Mathematical Sciences

MATH-243 – Analytical Geometry and Calculus C Instructor: Marco A. Montes de Oca Spring 2012

Homework 5

Name:

Section:

| Due date: | February | 23, | 2012 | (Section | 50) |
|-----------|----------|-----|------|----------|-----|
|           | February | 22, | 2012 | (Section | 51) |

## Problems

Taken or adapted from Section 12.4 of the book MATH 241/242/243 University of Delaware by J. Stewart. Each exercise is worth 10 points for a total of 100 points.

- 1. Exercise # 12.4–1. Find the cross product  $\vec{a} \times \vec{b}$  of  $\vec{a} = \langle 6, 0, -2 \rangle$  and  $\vec{b} = \langle 0, 8, 0 \rangle$  and verify that it is orthogonal to both  $\vec{a}$  and  $\vec{b}$ .
- 2. Exercise # 12.4–7. Find the cross product  $\vec{a} \times \vec{b}$  of  $\vec{a} = \langle t, t^2, t^3 \rangle$  and  $\vec{b} = \langle 1, 2t, 3t^2 \rangle$  and verify that it is orthogonal to both  $\vec{a}$  and  $\vec{b}$ .
- 3. Exercise # 12.4–8. If  $\vec{a} = \hat{i} 2\hat{k}$  and  $\vec{b} = \hat{j} + \hat{k}$ , find  $\vec{a} \times \vec{b}$ . Sketch  $\vec{a}$ ,  $\vec{b}$ , and  $\vec{a} \times \vec{b}$  as vectors starting at the origin.
- 4. Exercise # 12.4–17. If  $\vec{a} = \langle 1, 2, 1 \rangle$  and  $\vec{b} = \langle 0, 1, 3 \rangle$ , find  $\vec{a} \times \vec{b}$  and  $\vec{b} \times \vec{a}$ .
- 5. Exercise # 12.4–21. Show that  $\vec{0} \times \vec{a} = \vec{0} = \vec{a} \times \vec{0}$  for any vector  $\vec{a}$  in  $V_3$ .
- 6. Exercise # 12.4–35. Find the volume of the parallelepiped with adjacent edges PQ, PR, and PS. The points are P(2, 0, -1), Q(4, 1, 0), R(3, -1, 1), and S(2, -2, -2).
- 7. Exercise # 12.4–40. Find the magnitude of the torque about P if a 36-lb force is applied as shown in Figure 1.
- 8. Exercise # 12.4–42. Let  $\vec{v} = 5\hat{j}$  and let  $\vec{u}$  be a vector with length 3 that starts at the origin and rotates in the *xy*-plane. Find the maximum and minimum values of the length of the vector  $\vec{u} \times \vec{v}$ . In what direction does  $\vec{u} \times \vec{v}$  point?



Figure 1: Torque problem

- 9. Exercise Review Chapter # 12–4. Calculate the given quantity if  $\vec{a} = \hat{i} + j 2\hat{k}$ ,  $\vec{b} = 3\hat{i} 2\hat{j} + \hat{k}$ , and  $\vec{c} = \hat{j} 5\hat{k}$ .
  - $2\vec{a} + 3\vec{b}$
  - $|\vec{b}|$
  - $\vec{a} \cdot \vec{b}$
  - $\vec{a} \times \vec{b}$
  - $|\vec{b} \times \vec{c}|$
  - $\vec{a} \cdot (\vec{b} \times \vec{c})$
  - $\vec{c} \times \vec{c}$
  - $\vec{a} \times (\vec{b} \times \vec{c})$
  - $\bullet \ {\rm comp}_{\vec{a}} \vec{b}$
  - $\operatorname{proj}_{\vec{a}}\vec{b}$
  - The angle between  $\vec{a}$  and  $\vec{b}$

10. Exercise # 12.4–53 (*Calculus: Early Transcendentals* 7th edition by J. Stewart.) Suppose that  $\vec{a} \neq \vec{0}$ .

- If  $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$ , does it follow that  $\vec{b} = \vec{c}$ ? If it does, explain. If it does not, give a counterexample.
- If  $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ , does it follow that  $\vec{b} = \vec{c}$ ? If it does, explain. If it does not, give a counterexample.
- If  $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$  and  $\vec{a} \times \vec{b} = \vec{a} \times \vec{c}$ , does it follow that  $\vec{b} = \vec{c}$ ? If it does, explain. If it does not, give a counterexample.