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Sign of Directional Derivatives
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Sign of Directional Derivatives

7 / 19



Descent Search Directions
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Line Search Algorithms
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Steepest Descent Direction

Let’s pk denote the search direction chosen at step k , that is,
xk+1 = xk + αkpk . Then, according to Taylor’s formula, we have:

f (xk+1) = f (xk + αkpk) =

f (xk) + αk∇f (xk) · pk +
α2
k
2 p · Hf (xk + tpk)pk

for some t ∈ (0, αk).

Then,

df (xk+αkpk )
dαk

= ∇f (xk) · pk + αkp · Hf (xk + tpk)pk .

When αk = 0, that is, the rate of change of f at xk in the
direction of pk is: ∇f (xk) · pk = ||∇f (xk)||||pk || cos θ, where θ is
the angle between pk and ∇f (xk).

Thus, the direction of most rapid decrease at xk is given
by:− ∇f (xk )

||∇f (xk )|| .
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Newton’s Direction

Let’s instead choose αkpk such that f (xk + αpk) is a minimum.
We may do this by approximating f (xk) with

mk(xk + αkpk) = f (xk) + αk∇f (xk) · pk +
α2
k

2
p · Hf (xk)pk

Then, xk + αkpk must satisfy:

∇mk(xk + αkpk) = αk∇f (xk) + α2
kHf (xk)pk = 0.

So, α2
kHf (xk)pk = −αk∇f (xk). Therefore:

αkpk = −(Hf (xk))−1∇f (xk).
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Basic search direction selection

Steepest descent direction:

xk+1 = xk − αk
∇f (xk )
||∇f (xk )|| , or simply xk+1 = xk − αk∇f (xk)

Newton’s direction:

xk+1 = xk − (Hf (xk))−1∇f (xk),

Micro-Lab

12 / 19



To Note

Steepest Descent Direction:

We need a smart choice of the step length because the length
of the gradient can change very rapidly.

It can be slow in comparison with other methods.

Newton’s Direction:

The Hessian must be positive definite at every step in order to
obtain a descent direction.

The Hessian may be singular.

13 / 19



Modifications

Steepest Descent Direction:

Strategies for modifying the step length

It may still be slow.

Newton’s Direction:

Quasi-Newton methods: Instead of using the Hessian, a
symmetric, non-singular, positive definite matrix is used.
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Desired conditions for step length selection

Decrease: f (xk+1) = f (xk + αkpk) < f (xk)

Wolfe conditions:

Sufficient Decrease (Armijo condition):
f (xk + αkpk) ≤ f (xk) + c1αk∇f (xk) · pk
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Desired conditions for step length selection

Armijo Condition:
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Desired conditions for step length selection

Decrease: f (xk+1) < f (xk)

Wolfe conditions:

Sufficient Decrease (Armijo condition):
f (xk+1) ≤ f (xk) + c1αk∇f (xk) · pk , c1 ∈ (0, 1) but c1 ≈ 10−4.

Curvature condition: ∇f (xk+1) · pk ≥ c2∇f (xk) · pk ,
c2 ∈ (c1, 1).
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Desired conditions for step length selection

Desired Curvature Condition:
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Desired conditions for step length selection

Decrease: f (xk+1) < f (xk)

Wolfe conditions:

Sufficient Decrease (Armijo condition):
f (xk+1) ≤ f (xk) + c1αk∇f (xk) · pk , c1 ∈ (0, 1) but c1 ≈ 10−4.

Curvature condition: ∇f (xk+1) · pk ≥ c2∇f (xk) · pk ,
c2 ∈ (c1, 1). Typically, c2 ≈ 0.9 for Newton or quasi-Newton
methods.
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