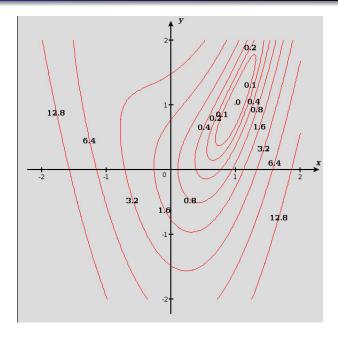
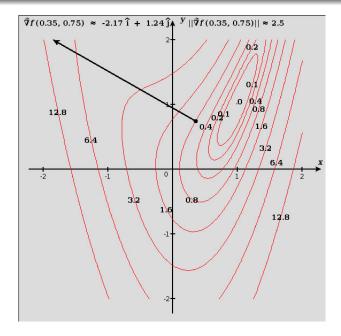
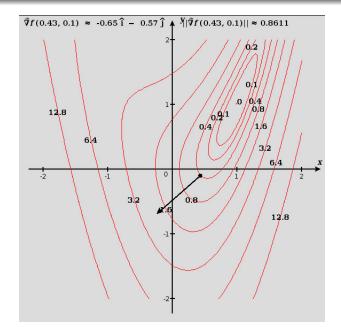
MATH529 – Fundamentals of Optimization Line Search Algorithms

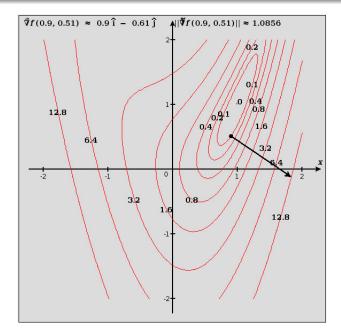
MARCO A. MONTES DE OCA

Mathematical Sciences, University of Delaware, USA

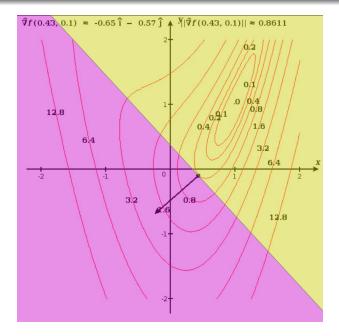




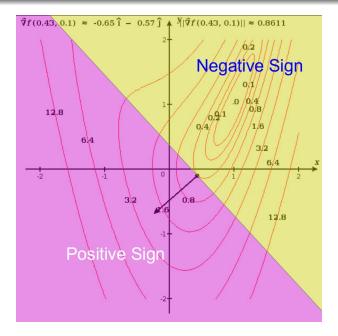




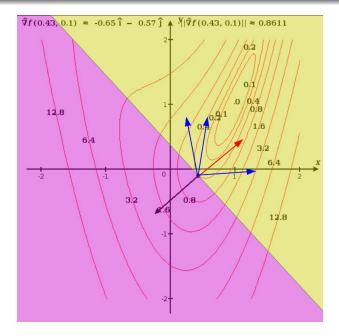
Sign of Directional Derivatives



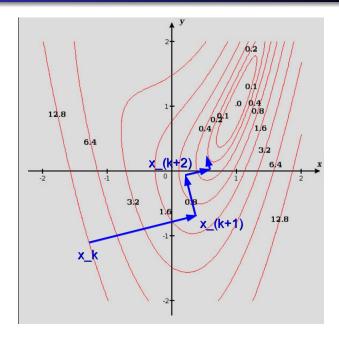
Sign of Directional Derivatives



Descent Search Directions



Line Search Algorithms



Steepest Descent Direction

Let's \mathbf{p}_k denote the search direction chosen at step k, that is, $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$. Then, according to Taylor's formula, we have:

$$f(\mathbf{x}_{k+1}) = f(\mathbf{x}_k + \alpha_k \mathbf{p}_k) = f(\mathbf{x}_k) + \alpha_k \nabla f(\mathbf{x}_k) \cdot \mathbf{p}_k + \frac{\alpha_k^2}{2} \mathbf{p} \cdot Hf(\mathbf{x}_k + t\mathbf{p}_k)\mathbf{p}_k$$
for some $t \in (0, \alpha_k)$.

Then,

$$\frac{\mathrm{d}f(\mathbf{x}_k + \alpha_k \mathbf{p}_k)}{\mathrm{d}\alpha_k} = \nabla f(\mathbf{x}_k) \cdot \mathbf{p}_k + \alpha_k \mathbf{p} \cdot Hf(\mathbf{x}_k + t\mathbf{p}_k)\mathbf{p}_k.$$

When $\alpha_k = 0$, that is, the rate of change of f at \mathbf{x}_k in the direction of \mathbf{p}_k is: $\nabla f(\mathbf{x}_k) \cdot \mathbf{p}_k = ||\nabla f(\mathbf{x}_k)||||\mathbf{p}_k||\cos\theta$, where θ is the angle between \mathbf{p}_k and $\nabla f(\mathbf{x}_k)$.

Thus, the direction of most rapid decrease at \mathbf{x}_k is given by: $-\frac{\nabla f(\mathbf{x}_k)}{||\nabla f(\mathbf{x}_k)||}$.

Let's instead choose $\alpha_k \mathbf{p}_k$ such that $f(\mathbf{x}_k + \alpha \mathbf{p}_k)$ is a minimum. We may do this by approximating $f(\mathbf{x}_k)$ with

$$m_k(\mathbf{x}_k + \alpha_k \mathbf{p}_k) = f(\mathbf{x}_k) + \alpha_k \nabla f(\mathbf{x}_k) \cdot \mathbf{p}_k + \frac{\alpha_k^2}{2} \mathbf{p} \cdot Hf(\mathbf{x}_k) \mathbf{p}_k$$

Then, $\mathbf{x}_k + \alpha_k \mathbf{p}_k$ must satisfy:

$$\nabla m_k(\mathbf{x}_k + \alpha_k \mathbf{p}_k) = \alpha_k \nabla f(\mathbf{x}_k) + \alpha_k^2 H f(\mathbf{x}_k) \mathbf{p}_k = \mathbf{0}.$$

So, $\alpha_k^2 Hf(\mathbf{x}_k)\mathbf{p}_k = -\alpha_k \nabla f(\mathbf{x}_k)$. Therefore:

 $\alpha_k \mathbf{p}_k = -(Hf(\mathbf{x}_k))^{-1} \nabla f(\mathbf{x}_k).$

Steepest descent direction:

 $\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \frac{\nabla f(\mathbf{x}_k)}{||\nabla f(\mathbf{x}_k)||}, \text{ or simply } \mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)$

Newton's direction:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - (Hf(\mathbf{x}_k))^{-1} \nabla f(\mathbf{x}_k),$$

Micro-Lab

Steepest Descent Direction:

- We need a smart choice of the step length because the length of the gradient can change very rapidly.
- It can be slow in comparison with other methods.

Newton's Direction:

- The Hessian must be positive definite at every step in order to obtain a descent direction.
- The Hessian may be singular.

Steepest Descent Direction:

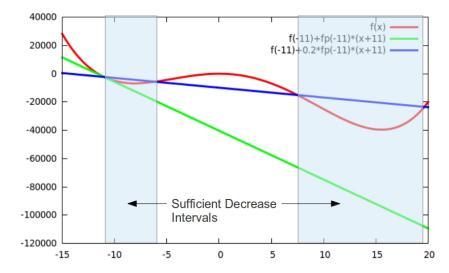
- Strategies for modifying the step length
- It may still be slow.

Newton's Direction:

• Quasi-Newton methods: Instead of using the Hessian, a symmetric, non-singular, positive definite matrix is used.

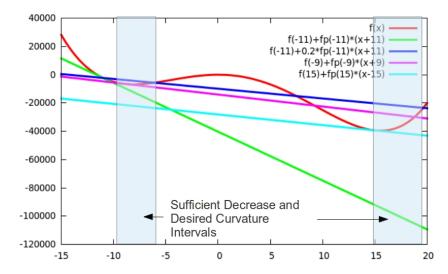
- Decrease: $f(\mathbf{x}_{k+1}) = f(\mathbf{x}_k + \alpha_k \mathbf{p}_k) < f(\mathbf{x}_k)$
- Wolfe conditions:
 - Sufficient Decrease (Armijo condition): $f(\mathbf{x}_k + \alpha_k \mathbf{p}_k) \le f(\mathbf{x}_k) + c_1 \alpha_k \nabla f(\mathbf{x}_k) \cdot \mathbf{p}_k$

Armijo Condition:



- Decrease: $f(\mathbf{x}_{k+1}) < f(\mathbf{x}_k)$
- Wolfe conditions:
 - Sufficient Decrease (Armijo condition): $f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) + c_1 \alpha_k \nabla f(\mathbf{x}_k) \cdot \mathbf{p}_k$, $c_1 \in (0,1)$ but $c_1 \approx 10^{-4}$.
 - Curvature condition: $\nabla f(\mathbf{x}_{k+1}) \cdot \mathbf{p}_k \ge c_2 \nabla f(\mathbf{x}_k) \cdot \mathbf{p}_k$, $c_2 \in (c_1, 1)$.

Desired Curvature Condition:



- Decrease: $f(\mathbf{x}_{k+1}) < f(\mathbf{x}_k)$
- Wolfe conditions:
 - Sufficient Decrease (Armijo condition): $f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) + c_1 \alpha_k \nabla f(\mathbf{x}_k) \cdot \mathbf{p}_k$, $c_1 \in (0, 1)$ but $c_1 \approx 10^{-4}$.
 - Curvature condition: ∇f(x_{k+1}) · p_k ≥ c₂∇f(x_k) · p_k, c₂ ∈ (c₁, 1). Typically, c₂ ≈ 0.9 for Newton or quasi-Newton methods.