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Motivating Example
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Motivating Example

min f (H) = 1000 + 12h1 + 10h2 + 11h3 + . . .+ 15hn

subject to h1 + h2 + . . .+ hn = 100, 0 ≤ hi ≤ 20.

3 / 23



Effects of constraints
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Effects of constraints
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Definitions

A general model of a constrained optimization problem is:

min
x∈Rn

f (x)

subject to
ci (x) = 0, i ∈ E

ci (x) ≥ 0 (or ci (x) ≤ 0), i ∈ I

where f is called the objective function, the functions ci (x), i ∈ E
are the equality constraints, and the functions ci (x), i ∈ I are the
inequality constraints.

6 / 23



Definitions

The feasible set Ω ⊂ Rn is the set of points that satisfy the
constraints:

Ω = {x | ci (x) ≥ 0, i ∈ I, ci (x) = 0, i ∈ E}

Therefore, a constrained optimization problem can be defined
simply as

min
x∈Ω

f (x)
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Example: One equality constraint

Suppose you want to solve

max f (x) = x1x2 + 2x1,

subject to g(x) = 2x1 + x2 = 1.
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Example: One equality constraint
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Example: One equality constraint

Suppose you want to solve

max f (x) = x1x2 + 2x1,

subject to g(x) = 2x1 + x2 = 1.

Solution method 1: Substitution

From the constraint, we see that x2 = 1− 2x1. Thus, f (x) can be
rewritten as f (x1) = x1(1− 2x1) + 2x1.
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Example: One equality constraint

Suppose you want to solve

max f (x) = x1x2 + 2x1,

subject to g(x) = 2x1 + x2 = 1.

Solution method 1: Substitution

From the constraint, we see that x2 = 1− 2x1. Thus, f (x) can be
rewritten as f (x1) = x1(1− 2x1) + 2x1.

This method works only on very few cases. E.g., it does not
work when one cannot solve for one of the variables.
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Example: One equality constraint

Solution method 2: Lagrange multipliers

Define the Lagrangian function:

Z = f (x) + λ(0− c1(x)) = x1x2 + 2x1 + λ(1− 2x1 − x2)

where λ is a so-called Lagrange multiplier.

If the constraint is satisfied, then c1(x) = 0, and Z is identical to f .

Therefore, as long as c1(x) = 0, searching for the maximum of Z is
the same as searching for the maximum of f .

So, how to always satisfy c1(x) = 0?
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Example: One equality constraint

Solution method 2: Lagrange multipliers

If Z = Z (λ, x1, x2), then ∇Z = 0 implies

∂Z
∂λ = 1− 2x1 − x2 = 0, or simply c1(x) = 0 (the original
constraint)

∂Z
∂x1

= x2 + 2− 2λ = 0, and

∂Z
∂x2

= x1 − λ = 0

Solving this system: x1 = 3/4, x2 = −1/2, and λ = 3/4. A second
order condition should be used to tell whether (3/4,−1/2) is a
maximum or a minimum.
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Lagrange multipliers

In general, to find an extremum x? of f (x) subject to c1(x) = 0,
we define the Lagrangian function:

L(x , λ) = f (x)− λc1(x)

Then, ∇L(x?, λ?) = 0 implies

c1(x?) = 0 and ∇f (x?)− λ?∇c1(x?) = 0, or equivalently
∇f (x?) = λ?∇c1(x?).
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Exercise

Find all the extrema of f (x) = x2
1 + x2

2 , subject to x2
1 + x2 = 1
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Exercise

Find all the extrema of f (x) = x2
1 + x2

2 , subject to x2
1 + x2 = 1

The first one to finish receives: an easter bunny!
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Lagrange Multiplier Method: Derivation

Total differential approach:

Let z = f (x , y) (objective function) and g(x , y) = c (equality
constraint). At an extremum, the first order condition translates
into dz = 0, so dz = fxdx + fydy = 0 (1). Since dx and dy are not
independent (due to the constraint), we can take the differential of
g as well: dg = gxdx + gydy = 0 (2). From (2), dx = −gy

gx
dy .

Substituting dx in (1):

−fx gy
gx
dy + fydy = 0, which implies fx

gx
=

fy
gy

.

If fx
gx

=
fy
gy

= λ, then fx − λgx = 0 and fy − λgy = 0, which are the
Lagrange multiplier equations.
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Lagrange Multiplier Method: Derivation

Taylor series approach:
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Lagrange Multiplier Method: Derivation

Taylor series approach:

If we want to satisfy the constraint as we move from x to x + s,
then

0 = c1(x + s) ≈ c1(x) +∇c1(x)T s, but since c1(x) = 0, then

∇c1(x)T s = 0 (1)

Additionally, if we want to decrease the function as we move, we
would require ∇f (x)T s < 0 (2).

Only when ∇f (x) = λ∇g(x), we cannot find s to satisfy (1) and
(2).
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Lagrange Multiplier Method: Derivation

Taylor series approach:
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Relevance of the Lagrange multiplier in Economics

The Lagrange multiplier measures the sensitivity of the optimal
solution to changes in the constraint. For example, assume that
λ = λ(B), x = x(B), and y = y(B). If you want to maximize
U(x) subject to g(x) = B (so that c1(x) = B − g(x) = 0). Then,

L(x , λ) = U(x) + λ(B − g(x)). By the Chain Rule:

dL
dB = Lx1

dx1
dB + Lx2

dx2
dB + Lλ

dλ
dB

dL
dB = (Ux1 − λgx1)dx1

dB + (Ux2 − λgx2)dx2
dB + (B − g(x)) dλ

dB + λ(1).

Since the first order condition says that Ux1 − λgx1 = 0,
Ux2 − λgx2 = 0, and B − g(x) = 0, we have

dL
dB = λ. (This equation answers the question “Will a slight
relaxation of the budget constraint increase or decrease the
optimal value of U?”)
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Example

Use the Lagrange-multiplier method to find stationary values of
z = x − 3y − xy , subject to x + y = 6. Will a slight relaxation of
the constraint increase or decrease the optimal value of z? At
what rate?
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Multiple constraints

The Lagrangian can be extended to simultaneously consider
multiple constraints. For example, let f (x) be subject to:

g(x) = c and h(x) = d .

The Lagrangian function may be defined as follows:

L(x , λ, µ) = f (x) + λ(c − g(x)) + µ(d − h(x)).

The new first-order condition is now:

c − g(x) = 0, d − h(x) = 0, fxi − λgxi − µhxi = 0.
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