MATH529 – Fundamentals of Optimization Fundamentals of Constrained Optimization IV

Marco A. Montes de Oca

Mathematical Sciences, University of Delaware, USA

Example

maximize
$$x + y^2$$

subject to:
 $x - y = 5$
 $x^2 + 9y^2 \le 25$

Example:

maximize x_1

subject to:

$$x_2 - (1 - x_1)^3 \le 0$$

 $x_1, x_2 \ge 0$

Example:

maximize x₁

subject to:

$$x_2 - (1 - x_1)^3 \le 0$$

 $2x_1 + x_2 \le 2$
 $x_1, x_2 \ge 0$

$$L(x,\lambda) = x_1 + \lambda_1(-x_2 + (1-x_1)^3) + \lambda_2(2-2x_1-x_2) + \lambda_3x_1 + \lambda_4x_2$$

KKT conditions:

(1)
$$1 - 3\lambda_1(1 - x_1)^2 - 2\lambda_2 + \lambda_3 = 0$$

(2)
$$-\lambda_1 - \lambda_2 + \lambda_4 = 0$$

(3)
$$x_2 - (1 - x_1)^3 \le 0$$

(4)
$$2x_1 + x_2 \leq 2$$

(5)
$$x_1, x_2 \geq 0$$

(6)
$$\lambda_1(-x_2+(1-x_1)^3)=0$$
, $\lambda_2(2-2x_1-x_2)=0$, $\lambda_3x_1=0$, $\lambda_4x_2=0$

(7)
$$\lambda_1, \lambda_2, \lambda_3, \lambda_4 \geq 0$$

At
$$(1,0)$$
, $\lambda_1 \geq 0$, $\lambda_2 \geq 0$, $\lambda_3 = 0$, $\lambda_4 \geq 0$. Then:

- (1) $1-2\lambda_2=0$, which implies $\lambda_2=\frac{1}{2}$
- (2) $-\lambda_1-\lambda_2+\lambda_4=-\lambda_1-\frac{1}{2}+\lambda_4=0$, or $-\lambda_1+\lambda_4=\frac{1}{2}$

Thus, (1,0) satisfies the KKT conditions as long as $-\lambda_1 + \lambda_4 = \frac{1}{2}$ for $\lambda_1, \lambda_2 > 0$.

- a) The vector of Lagrange multipliers is not necessarily unique.
- b) KKT conditions can remain valid despite the existence of cusps.
- $\ensuremath{\text{c}})$ There are cases in which the KKT conditions fail even without cusps.

Why?

Constraint Qualifications

Definition

The tangent cone to a set Ω at a point $\mathbf{x} \in \Omega$, denoted by $T_{\Omega}(\mathbf{x})$, consists of the limits of all (secant) rays which originate at \mathbf{x} and pass through a sequence of points $\mathbf{p}_i \in \Omega - \{\mathbf{x}\}$ which converges to \mathbf{x} .

Constraint Qualifications: Linearized feasible directions set

Definition

Given a feasible point \mathbf{x} and the active constraint set $\mathcal{A}(\mathbf{x})$, the set of linearized feasible directions $\mathcal{F}(\mathbf{x})$ is the set of vectors \mathbf{d} such that

$$\begin{cases} \mathbf{d}^T \nabla c_i(\mathbf{x}) = 0 & \text{for all } i \in \mathcal{E}, \\ \mathbf{d}^T \nabla c_i(\mathbf{x}) \ge 0 & \text{for all } i \in \mathcal{A}(\mathbf{x}) \cap \mathcal{I}. \end{cases}$$

Constraint Qualifications: Linearized feasible directions set

Definition

Given a feasible point \mathbf{x} and the active constraint set $\mathcal{A}(\mathbf{x})$, the set of linearized feasible directions $\mathcal{F}(\mathbf{x})$ is the set of vectors \mathbf{d} such that

$$\begin{cases} \mathbf{d}^T \nabla c_i(\mathbf{x}) = 0 & \text{for all } i \in \mathcal{E}, \\ \mathbf{d}^T \nabla c_i(\mathbf{x}) \ge 0 & \text{for all } i \in \mathcal{A}(\mathbf{x}) \cap \mathcal{I}. \end{cases}$$

The definition of $\mathcal{T}_{\Omega}(\mathbf{x})$ depends on the geometry of Ω . The definition of $\mathcal{F}(\mathbf{x})$ depends on the algebraic definition of the constraints.

maximize x_1

subject to:

$$x_2 - (1 - x_1)^3 \le 0$$

 $x_1, x_2 \ge 0$

maximize x₁

subject to:

$$x_2 - (1 - x_1)^3 \le 0$$

$$2x_1+x_2\leq 2$$

$$x_1, x_2 \geq 0$$

Constraint Qualifications: Definition

Definition

A constraint qualification is an assumption that ensures similarity of the constraint set Ω and its linearized approximation, in a neighborhood of a point \mathbf{x}^* .

Constraint qualifications are *sufficient* conditions for the linear approximation to be adequate. However, they are not necessary.

Constraint Qualifications: LICQ

Definition

Given a point \mathbf{x} and the active set $\mathcal{A}(\mathbf{x})$, we say that the linear independence constraint qualification (LICQ) holds if the set of active constraint gradients $\{\nabla c_i(\mathbf{x}), i \in \mathcal{A}(\mathbf{x})\}$ is linearly independent.

Constraint Qualifications: LICQ

Example:

maximize
$$x_1$$

subject to:

$$x_2 - (1 - x_1)^3 \le 0$$
$$x_1, x_2 \ge 0$$

At
$$\mathbf{x} = (1,0)$$
, $\mathcal{A}(\mathbf{x}) = \{1,3\}$.
 $c_1(\mathbf{x}) = x_2 - (1-x_1)^3$, so $\nabla c_1(1,0) = (0,1)^T$
 $c_3(\mathbf{x}) = -x_2$, so $\nabla c_3(1,0) = (0,-1)^T$.

Clearly, $\nabla c_1(1,0)$ and $\nabla c_3(1,0)$ are not linearly independent.

Example

maximize x1

subject to:

$$x_1^2 + x_2^2 \le 1$$

$$x_1, x_2 \geq 0$$

Solve graphically, draw the tangent cone and the set of feasible directions at the solution point, check also whether the optimal point satisfies LICQ, and the KKT conditions.

Constraint Qualifications: LICQ

Some implications:

- In general, there may be many vectors λ^* that satisfy the KKT conditions at a solution point \mathbf{x}^* . However, if LICQ holds, then λ^* is unique.
- If all the active constraints are linear, then $\mathcal{F}(\mathbf{x}^{\star}) = \mathcal{T}_{\Omega}(\mathbf{x}^{\star})$.

Constraint Qualifications: MFCQ

Another constraint qualification is called **Mangasarian-Fromovitz**.

Definition

Given a point \mathbf{x} and the active set $\mathcal{A}(\mathbf{x})$, we say that the Mangasarian-Fromovitz (MFCQ) holds if there exists a vector $\mathbf{w} \in \mathbb{R}^n$ such that

$$\nabla c_i(\mathbf{x}^*)^T \mathbf{w} > 0 \text{ for all } i \in \mathcal{A}(\mathbf{x}) \cap \mathcal{I}$$
$$\nabla c_i(\mathbf{x}^*)^T \mathbf{w} = 0, \text{ for all } i \in \mathcal{E}$$

Relationship between LICQ and MFCQ

If $\mathbf{x}^* \in \Omega$ satisfies LICQ, then \mathbf{x}^* satisfies MFCQ.

Proof: Suppose we are minimizing a function $f(\mathbf{x})$. Define $\mathcal{A}(\mathbf{x}^{\star}) = \{1, 2, \ldots, m, m+1, \ldots, q\}$ where $1, 2, \ldots, m$ are the indices of all the equality constraints, and $m+1, \ldots, q$ are the indices of all the active inequality constraints. Then define

$$M = \left(egin{array}{c}
abla c_1(\mathbf{x}^\star) \\
dots \\
abla c_m(\mathbf{x}^\star) \\
abla c_{m+1}(\mathbf{x}^\star) \\
dots \\
abla c_q(\mathbf{x}^\star)
abla c_1(\mathbf{x}^\star) \\
dots \\
abla c_q(\mathbf{x}^\star)
abla c_1(\mathbf{x}^\star) \\
abla c_1(\mathbf{x}^\star) \\
abla c_2(\mathbf{x}^\star) \\
abla c_2(\mathbf{x}^\star) \\
abla c_3(\mathbf{x}^\star) \\
abla c_4(\mathbf{x}^\star) \\
abla c_2(\mathbf{x}^\star) \\
abla c_3(\mathbf{x}^\star) \\
abla c_4(\mathbf{x}^\star) \\
abla c_4(\mathbf{x}^$$

By LICQ, the rows of M are linearly independent.

Relationship between LICQ and MFCQ

Therefore, the system $M\mathbf{d} = \mathbf{b}$ should have a solution, for some $\mathbf{d} \in \mathbb{R}^q$ and $\mathbf{b} = (0, 0, \dots, 0, 1, \dots, 1)^T$. (The first m terms are all zero, and the rest all one.)

The solution vector \mathbf{d} ensures that $\nabla c_i(\mathbf{x}^*)^T \mathbf{d} = 0$, for all $i \in \mathcal{E}$, and $\nabla c_j(\mathbf{x}^*)^T \mathbf{d} = 1 > 0$, for all $j \in \mathcal{A}(\mathbf{x}^*) \cap \mathcal{I}$.

Relationship between LICQ and MFCQ

MFCQ does not imply LICQ.

Example: Check
$$\mathbf{x}^* = (0,0)^T$$
 for:

$$\max f(x, y)$$
 subject to

$$(x-1)^2 + (y-1)^2 \le 2$$

$$(x-1)^2 + (y+1)^2 \le 2$$

$$-x \le 0$$