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Example

maximize x + y 2

subject to:

x − y = 5

x2 + 9y 2 ≤ 25
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Constraint Qualifications: Motivating Examples

Example:

maximize x1

subject to:

x2 − (1− x1)3 ≤ 0

x1, x2 ≥ 0
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Example:

maximize x1

subject to:

x2 − (1− x1)3 ≤ 0

2x1 + x2 ≤ 2

x1, x2 ≥ 0
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Constraint Qualifications: Motivating Examples

L(x , λ) = x1 +λ1(−x2 + (1− x1)3) +λ2(2−2x1− x2) +λ3x1 +λ4x2

KKT conditions:

(1) 1− 3λ1(1− x1)2 − 2λ2 + λ3 = 0

(2) −λ1 − λ2 + λ4 = 0

(3) x2 − (1− x1)3 ≤ 0

(4) 2x1 + x2 ≤ 2

(5) x1, x2 ≥ 0

(6) λ1(−x2 + (1− x1)3) = 0, λ2(2− 2x1 − x2) = 0, λ3x1 = 0,
λ4x2 = 0

(7) λ1, λ2, λ3, λ4 ≥ 0
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Constraint Qualifications: Motivating Examples

At (1, 0), λ1 ≥ 0, λ2 ≥ 0, λ3 = 0, λ4 ≥ 0. Then:

(1) 1− 2λ2 = 0, which implies λ2 = 1
2

(2) −λ1 − λ2 + λ4 = −λ1 − 1
2 + λ4 = 0, or −λ1 + λ4 = 1

2

Thus, (1, 0) satisfies the KKT conditions as long as −λ1 + λ4 = 1
2

for λ1, λ2 ≥ 0.

a) The vector of Lagrange multipliers is not necessarily
unique.
b) KKT conditions can remain valid despite the existence of
cusps.
c) There are cases in which the KKT conditions fail even
without cusps.
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Why?
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Constraint Qualifications

2 4 6

2

4

6

∇ f (x )

∇ c1(x )∇ f (x )T s<0

∇ c1(x )
T s≥0

∇ f (x )T s<0
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Constraint Qualifications: Tangent Cone

Definition

The tangent cone to a set Ω at a point x ∈ Ω, denoted by TΩ(x),
consists of the limits of all (secant) rays which originate at x and
pass through a sequence of points pi ∈ Ω− {x} which converges
to x.
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Constraint Qualifications: Tangent Cone
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Constraint Qualifications: Linearized feasible directions set

Definition

Given a feasible point x and the active constraint set A(x), the set
of linearized feasible directions F(x) is the set of vectors d such
that {

dT∇ci (x) = 0 for all i ∈ E ,

dT∇ci (x) ≥ 0 for all i ∈ A(x)
⋂
I.
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Constraint Qualifications: Linearized feasible directions set

Definition

Given a feasible point x and the active constraint set A(x), the set
of linearized feasible directions F(x) is the set of vectors d such
that {

dT∇ci (x) = 0 for all i ∈ E ,

dT∇ci (x) ≥ 0 for all i ∈ A(x)
⋂
I.

The definition of TΩ(x) depends on the geometry of Ω. The
definition of F(x) depends on the algebraic definition of the
constraints.
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Constraint Qualifications: Motivating Examples

maximize x1

subject to:

x2 − (1− x1)3 ≤ 0

x1, x2 ≥ 0

maximize x1

subject to:

x2 − (1− x1)3 ≤ 0

2x1 + x2 ≤ 2

x1, x2 ≥ 0
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Constraint Qualifications: Definition

Definition

A constraint qualification is an assumption that ensures similarity
of the constraint set Ω and its linearized approximation, in a
neighborhood of a point x?.

Constraint qualifications are sufficient conditions for the linear
approximation to be adequate. However, they are not necessary.
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Constraint Qualifications: LICQ

Definition

Given a point x and the active set A(x), we say that the linear
independence constraint qualification (LICQ) holds if the set of
active constraint gradients {∇ci (x), i ∈ A(x)} is linearly
independent.
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Constraint Qualifications: LICQ

Example:

maximize x1

subject to:

x2 − (1− x1)3 ≤ 0

x1, x2 ≥ 0

At x = (1, 0), A(x) = {1, 3}.
c1(x) = x2 − (1− x1)3, so ∇c1(1, 0) = (0, 1)T

c3(x) = −x2, so ∇c3(1, 0) = (0,−1)T .

Clearly, ∇c1(1, 0) and ∇c3(1, 0) are not linearly independent.
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Example

maximize x1

subject to:

x2
1 + x2

2 ≤ 1

x1, x2 ≥ 0

Solve graphically, draw the tangent cone and the set of feasible
directions at the solution point, check also whether the optimal
point satisfies LICQ, and the KKT conditions.
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Constraint Qualifications: LICQ

Some implications:

In general, there may be many vectors λ? that satisfy the
KKT conditions at a solution point x?. However, if LICQ
holds, then λ? is unique.

If all the active constraints are linear, then F(x?) = TΩ(x?).
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Constraint Qualifications: MFCQ

Another constraint qualification is called Mangasarian-Fromovitz.

Definition

Given a point x and the active set A(x), we say that the
Mangasarian-Fromovitz (MFCQ) holds if there exists a vector
w ∈ Rn such that

∇ci (x?)Tw > 0 for all i ∈ A(x) ∩ I

∇ci (x?)Tw = 0, for all i ∈ E
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Relationship between LICQ and MFCQ

If x? ∈ Ω satisfies LICQ, then x? satisfies MFCQ.

Proof: Suppose we are minimizing a function f (x). Define
A(x?) = {1, 2, . . . ,m,m + 1, . . . , q} where 1, 2, . . . ,m are the
indices of all the equality constraints, and m + 1, . . . , q are the
indices of all the active inequality constraints. Then define

M =



∇c1(x?)
...

∇cm(x?)
∇cm+1(x?)

...
∇cq(x?)


By LICQ, the rows of M are linearly independent.
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Relationship between LICQ and MFCQ

Therefore, the system Md = b should have a solution, for some
d ∈ Rq and b = (0, 0, . . . , 0, 1, . . . , 1)T . (The first m terms are all
zero, and the rest all one.)

The solution vector d ensures that ∇ci (x?)Td = 0, for all i ∈ E ,
and ∇cj(x?)Td = 1 > 0, for all j ∈ A(x?) ∩ I.
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Relationship between LICQ and MFCQ

MFCQ does not imply LICQ.

Example: Check x? = (0, 0)T for:

max f (x , y) subject to

(x − 1)2 + (y − 1)2 ≤ 2
(x − 1)2 + (y + 1)2 ≤ 2
−x ≤ 0
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