MATH529 – Fundamentals of Optimization Fundamentals of Constrained Optimization IV Marco A. Montes de Oca Mathematical Sciences, University of Delaware, USA ## Example maximize $$x + y^2$$ subject to: $x - y = 5$ $x^2 + 9y^2 \le 25$ Example: maximize x_1 subject to: $$x_2 - (1 - x_1)^3 \le 0$$ $x_1, x_2 \ge 0$ Example: maximize x₁ subject to: $$x_2 - (1 - x_1)^3 \le 0$$ $2x_1 + x_2 \le 2$ $x_1, x_2 \ge 0$ $$L(x,\lambda) = x_1 + \lambda_1(-x_2 + (1-x_1)^3) + \lambda_2(2-2x_1-x_2) + \lambda_3x_1 + \lambda_4x_2$$ KKT conditions: (1) $$1 - 3\lambda_1(1 - x_1)^2 - 2\lambda_2 + \lambda_3 = 0$$ (2) $$-\lambda_1 - \lambda_2 + \lambda_4 = 0$$ (3) $$x_2 - (1 - x_1)^3 \le 0$$ (4) $$2x_1 + x_2 \leq 2$$ (5) $$x_1, x_2 \geq 0$$ (6) $$\lambda_1(-x_2+(1-x_1)^3)=0$$, $\lambda_2(2-2x_1-x_2)=0$, $\lambda_3x_1=0$, $\lambda_4x_2=0$ (7) $$\lambda_1, \lambda_2, \lambda_3, \lambda_4 \geq 0$$ At $$(1,0)$$, $\lambda_1 \geq 0$, $\lambda_2 \geq 0$, $\lambda_3 = 0$, $\lambda_4 \geq 0$. Then: - (1) $1-2\lambda_2=0$, which implies $\lambda_2=\frac{1}{2}$ - (2) $-\lambda_1-\lambda_2+\lambda_4=-\lambda_1-\frac{1}{2}+\lambda_4=0$, or $-\lambda_1+\lambda_4=\frac{1}{2}$ Thus, (1,0) satisfies the KKT conditions as long as $-\lambda_1 + \lambda_4 = \frac{1}{2}$ for $\lambda_1, \lambda_2 > 0$. - a) The vector of Lagrange multipliers is not necessarily unique. - b) KKT conditions can remain valid despite the existence of cusps. - $\ensuremath{\text{c}})$ There are cases in which the KKT conditions fail even without cusps. ## Why? ## Constraint Qualifications #### Definition The tangent cone to a set Ω at a point $\mathbf{x} \in \Omega$, denoted by $T_{\Omega}(\mathbf{x})$, consists of the limits of all (secant) rays which originate at \mathbf{x} and pass through a sequence of points $\mathbf{p}_i \in \Omega - \{\mathbf{x}\}$ which converges to \mathbf{x} . ## Constraint Qualifications: Linearized feasible directions set #### Definition Given a feasible point \mathbf{x} and the active constraint set $\mathcal{A}(\mathbf{x})$, the set of linearized feasible directions $\mathcal{F}(\mathbf{x})$ is the set of vectors \mathbf{d} such that $$\begin{cases} \mathbf{d}^T \nabla c_i(\mathbf{x}) = 0 & \text{for all } i \in \mathcal{E}, \\ \mathbf{d}^T \nabla c_i(\mathbf{x}) \ge 0 & \text{for all } i \in \mathcal{A}(\mathbf{x}) \cap \mathcal{I}. \end{cases}$$ ## Constraint Qualifications: Linearized feasible directions set #### Definition Given a feasible point \mathbf{x} and the active constraint set $\mathcal{A}(\mathbf{x})$, the set of linearized feasible directions $\mathcal{F}(\mathbf{x})$ is the set of vectors \mathbf{d} such that $$\begin{cases} \mathbf{d}^T \nabla c_i(\mathbf{x}) = 0 & \text{for all } i \in \mathcal{E}, \\ \mathbf{d}^T \nabla c_i(\mathbf{x}) \ge 0 & \text{for all } i \in \mathcal{A}(\mathbf{x}) \cap \mathcal{I}. \end{cases}$$ The definition of $\mathcal{T}_{\Omega}(\mathbf{x})$ depends on the geometry of Ω . The definition of $\mathcal{F}(\mathbf{x})$ depends on the algebraic definition of the constraints. maximize x_1 subject to: $$x_2 - (1 - x_1)^3 \le 0$$ $x_1, x_2 \ge 0$ maximize x₁ subject to: $$x_2 - (1 - x_1)^3 \le 0$$ $$2x_1+x_2\leq 2$$ $$x_1, x_2 \geq 0$$ ## Constraint Qualifications: Definition #### Definition A constraint qualification is an assumption that ensures similarity of the constraint set Ω and its linearized approximation, in a neighborhood of a point \mathbf{x}^* . Constraint qualifications are *sufficient* conditions for the linear approximation to be adequate. However, they are not necessary. ## Constraint Qualifications: LICQ #### Definition Given a point \mathbf{x} and the active set $\mathcal{A}(\mathbf{x})$, we say that the linear independence constraint qualification (LICQ) holds if the set of active constraint gradients $\{\nabla c_i(\mathbf{x}), i \in \mathcal{A}(\mathbf{x})\}$ is linearly independent. ## Constraint Qualifications: LICQ #### Example: maximize $$x_1$$ subject to: $$x_2 - (1 - x_1)^3 \le 0$$ $$x_1, x_2 \ge 0$$ At $$\mathbf{x} = (1,0)$$, $\mathcal{A}(\mathbf{x}) = \{1,3\}$. $c_1(\mathbf{x}) = x_2 - (1-x_1)^3$, so $\nabla c_1(1,0) = (0,1)^T$ $c_3(\mathbf{x}) = -x_2$, so $\nabla c_3(1,0) = (0,-1)^T$. Clearly, $\nabla c_1(1,0)$ and $\nabla c_3(1,0)$ are not linearly independent. ## Example maximize x1 subject to: $$x_1^2 + x_2^2 \le 1$$ $$x_1, x_2 \geq 0$$ Solve graphically, draw the tangent cone and the set of feasible directions at the solution point, check also whether the optimal point satisfies LICQ, and the KKT conditions. ## Constraint Qualifications: LICQ #### Some implications: - In general, there may be many vectors λ^* that satisfy the KKT conditions at a solution point \mathbf{x}^* . However, if LICQ holds, then λ^* is unique. - If all the active constraints are linear, then $\mathcal{F}(\mathbf{x}^{\star}) = \mathcal{T}_{\Omega}(\mathbf{x}^{\star})$. ## Constraint Qualifications: MFCQ Another constraint qualification is called **Mangasarian-Fromovitz**. #### Definition Given a point \mathbf{x} and the active set $\mathcal{A}(\mathbf{x})$, we say that the Mangasarian-Fromovitz (MFCQ) holds if there exists a vector $\mathbf{w} \in \mathbb{R}^n$ such that $$\nabla c_i(\mathbf{x}^*)^T \mathbf{w} > 0 \text{ for all } i \in \mathcal{A}(\mathbf{x}) \cap \mathcal{I}$$ $$\nabla c_i(\mathbf{x}^*)^T \mathbf{w} = 0, \text{ for all } i \in \mathcal{E}$$ ### Relationship between LICQ and MFCQ If $\mathbf{x}^* \in \Omega$ satisfies LICQ, then \mathbf{x}^* satisfies MFCQ. Proof: Suppose we are minimizing a function $f(\mathbf{x})$. Define $\mathcal{A}(\mathbf{x}^{\star}) = \{1, 2, \ldots, m, m+1, \ldots, q\}$ where $1, 2, \ldots, m$ are the indices of all the equality constraints, and $m+1, \ldots, q$ are the indices of all the active inequality constraints. Then define $$M = \left(egin{array}{c} abla c_1(\mathbf{x}^\star) \\ dots \\ abla c_m(\mathbf{x}^\star) \\ abla c_{m+1}(\mathbf{x}^\star) \\ dots \\ abla c_q(\mathbf{x}^\star) abla c_1(\mathbf{x}^\star) \\ dots \\ abla c_q(\mathbf{x}^\star) abla c_1(\mathbf{x}^\star) \\ abla c_1(\mathbf{x}^\star) \\ abla c_2(\mathbf{x}^\star) \\ abla c_2(\mathbf{x}^\star) \\ abla c_3(\mathbf{x}^\star) \\ abla c_4(\mathbf{x}^\star) \\ abla c_2(\mathbf{x}^\star) \\ abla c_3(\mathbf{x}^\star) \\ abla c_4(\mathbf{x}^\star) c_4(\mathbf{x}^$$ By LICQ, the rows of M are linearly independent. ## Relationship between LICQ and MFCQ Therefore, the system $M\mathbf{d} = \mathbf{b}$ should have a solution, for some $\mathbf{d} \in \mathbb{R}^q$ and $\mathbf{b} = (0, 0, \dots, 0, 1, \dots, 1)^T$. (The first m terms are all zero, and the rest all one.) The solution vector \mathbf{d} ensures that $\nabla c_i(\mathbf{x}^*)^T \mathbf{d} = 0$, for all $i \in \mathcal{E}$, and $\nabla c_j(\mathbf{x}^*)^T \mathbf{d} = 1 > 0$, for all $j \in \mathcal{A}(\mathbf{x}^*) \cap \mathcal{I}$. ## Relationship between LICQ and MFCQ MFCQ does not imply LICQ. Example: Check $$\mathbf{x}^* = (0,0)^T$$ for: $$\max f(x, y)$$ subject to $$(x-1)^2 + (y-1)^2 \le 2$$ $$(x-1)^2 + (y+1)^2 \le 2$$ $$-x \le 0$$