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Methods for Constrained Optimization

Optimization Algorithms exploit the structure of the problem:

Linear Programs: Simplex Method, Interior-point Method, . . .

Nonlinear Programs: Sequential Quadratic Programming,
Penalty Methods, . . .
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Linear Programming

Definition

A linear program is one with linear objective function and linear
constraints, which may include equality and inequality constraints.

Example:

min − 4x1 + 2x2 − 2x3 + 13x4,

subject to x1 + x2 ≥ 3, x1 − x3 + x4 = 3, x1, x2, x3, x4 ≥ 0
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Linear Programming

Appeal:

It is often easier (and more appropriate) to model problems as
linear programs

KKT conditions are valid

The feasible set is a polytope (a convex, connected, set with
flat, polygonal faces).

The solution is found at extreme points, thus reducing the
search space to specific regions of the feasible set.

A local optimum will also be a global optimum.
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Linear Programming: Toward a solution method

Interior, boundary, extreme points:

Not in the set

No line between
points belonging 
to the set
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Linear Programming: Toward a solution method

Supporting hyperplanes:

F

H

A supporting hyperplane H has one or more points in common
with a convex set F , but F lies completely one one side of H.
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Linear Programming: Toward a solution method

Theorem 1: Given u, a boundary point of a closed convex set,
there is at least one supporting hyperplane at u.

Theorem 2: For a closed convex set bounded from below,
there is at least one extreme point in every supporting
hyperplane.

Since in linear programming the objective function is linear, the
hyperplane corresponding to the optimal value of the function will
be a supporting hyperplane of the feasible set.
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Linear Programming: Toward a solution method

Theorem 1: Given u, a boundary point of a closed convex set,
there is at least one supporting hyperplane at u.

Theorem 2: For a closed convex set bounded from below,
there is at least one extreme point in every supporting
hyperplane.

Since in linear programming the objective function is linear, the
hyperplane corresponding to the optimal value of the function will
be a supporting hyperplane of the feasible set.

We can therefore pay attention only to extreme points!
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Linear Programming: Toward a solution method

Example:

max 40x + 30y

subject to:

x + 2y ≤ 24
0 ≤ x ≤ 16
0 ≤ y ≤ 8
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Linear Programming: Toward a solution method

y

x
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Linear Programming: Toward a solution method

Dummy variables: Slacks and Surpluses:

y

x
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Linear Programming: Toward a solution method

Dummy variables: Slacks and Surpluses:

y

x

With the inexact satisfaction of a constraint, there is a slack
or surplus related to one or more constraints.
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Linear Programming: Toward a solution method

Step 1: Transforming the program:

max p = 40x + 30y + 0s1 + 0s2 + 0s3 + 0s4 + 0s5

subject to:

x + 2y + s1 = 24
x + s2 = 16
y + s3 = 8
x − s4 = 0 ∗

y − s5 = 0 ∗

x , y , s1, s2, s3, s4, s5 ≥ 0

*For surpluses, we add −si , with si ≥ 0.
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Linear Programming: Toward a solution method

Step 1: Transforming the program:

max p = 40x + 30y

subject to:

x + 2y + s1 = 24
x + s2 = 16
y + s3 = 8

x , y , s1, s2, s3 ≥ 0
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Linear Programming: Toward a solution method

Step 2: Generating extreme points:

 1 2 1 0 0
1 0 0 1 0
0 1 0 0 1




x
y
s1
s2
s3

 =

 24
16
8


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Linear Programming: Toward a solution method

Step 2: Generating extreme points:

 1 2 1 0 0
1 0 0 1 0
0 1 0 0 1




x
y
s1
s2
s3

 =

 24
16
8



Let x = y = 0, then 1 0 0
0 1 0
0 0 1

  s1
s2
s3

 =

 24
16
8


That is s1 = 24, s2 = 16, and s3 = 8.
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Linear Programming: Toward a solution method

y

x
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Linear Programming: Toward a solution method

Step 2: Generating extreme points:

 1 2 1 0 0
1 0 0 1 0
0 1 0 0 1




x
y
s1
s2
s3

 =

 24
16
8



Let x = s1 = 0, then 2 0 0
0 1 0
1 0 1

  y
s2
s3

 =

 24
16
8


That is y = 12, s2 = 16, and s3 = −4. (Violates nonnegativity
restrictions!)
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Linear Programming: Toward a solution method

Step 2: Generating extreme points:

 1 2 1 0 0
1 0 0 1 0
0 1 0 0 1




x
y
s1
s2
s3

 =

 24
16
8



Let x = s2 = 0, then 2 1 0
0 0 0
1 0 1

  y
s1
s3

 =

 24
16
8


Invalid system!
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Linear Programming: Toward a solution method

Step 2: Generating extreme points:

 1 2 1 0 0
1 0 0 1 0
0 1 0 0 1




x
y
s1
s2
s3

 =

 24
16
8



Let x = s3 = 0, then 2 1 0
0 0 1
1 0 0

  y
s1
s2

 =

 24
16
8


That is y = 8, s2 = 16, and s3 = 8.
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Linear Programming: Toward a solution method

y

x
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Linear Programming: Toward a solution method

Step 2: Generating extreme points:

 1 2 1 0 0
1 0 0 1 0
0 1 0 0 1




x
y
s1
s2
s3

 =

 24
16
8



Let s1 = s3 = 0, then 1 2 0
1 0 1
0 1 0

  x
y
s2

 =

 24
16
8


That is x = 8, y = 8, and s2 = 8.
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Linear Programming: Toward a solution method

y

x
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Linear Programming: Toward a solution method

We now have a method to systematically generate extreme points.
But there are a few remaining questions:

How to select which columns to eliminate so that we generate
as few extreme points as possible?

How can we use the objective function to guide the search?

How to avoid generating invalid moves?
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The Simplex Method
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George B. Dantzig
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The idea behind the Simplex Method
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The Simplex Method

Simplex tableau:

p x y s1 s2 s3 Constant

1 -40 -30 0 0 0 0
0 1 2 1 0 0 24
0 1 0 0 1 0 16
0 0 1 0 0 1 8

Basis at (0,0):
s1 s2 s3
1 0 0
0 1 0
0 0 1



28 / 61



The Simplex Method

Pivoting: Choose the pivot column, then the pivot element.

p x y s1 s2 s3 Constant

1 -40 -30 0 0 0 0
0 1 2 1 0 0 24
0 1 0 0 1 0 16
0 0 1 0 0 1 8
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The Simplex Method

Pivoting: Choose the pivot column, then the pivot element.

Choose the column associated with the negative entry with
the largest abs. value

p x y s1 s2 s3 Constant

1 -40 -30 0 0 0 0
0 1 2 1 0 0 24
0 1 0 0 1 0 16
0 0 1 0 0 1 8
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The Simplex Method

Pivoting: Choose the pivot column, then the pivot element.

If we choose to replace s1:

p x y s1 s2 s3 Constant

1 -40 -30 0 0 0 0 40R2 + R1

0 1 2 1 0 0 24
0 1 0 0 1 0 16 R2 − R3

0 0 1 0 0 1 8
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The Simplex Method

Pivoting: Choose the pivot column, then the pivot element.

If we choose to replace s1:

p x y s1 s2 s3 Constant

1 0 50 40 0 0 960
0 1 2 1 0 0 24
0 0 2 1 -1 0 8
0 0 1 0 0 1 8

New basis:
x s2 s3
1 0 0
0 −1 0
0 0 1


Thus x = 24, y = 0, s1 = 0, s2 = −8, s3 = 8
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The Simplex Method

Pivoting: Choose the pivot column, then the pivot element.

If we choose to replace s1:

p x y s1 s2 s3 Constant

1 0 50 40 0 0 960
0 1 2 1 0 0 24
0 0 2 1 -1 0 8
0 0 1 0 0 1 8

New basis:
x s2 s3
1 0 0
0 −1 0
0 0 1


Thus x = 24, y = 0, s1 = 0, s2 = −8, s3 = 8

Invalid move!
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The Simplex Method

Pivoting: Choose the pivot column, then the pivot element.

If we choose to replace s2:

p x y s1 s2 s3 Constant

1 -40 -30 0 0 0 0 40R3 + R1

0 1 2 1 0 0 24 R2 − R3

0 1 0 0 1 0 16
0 0 1 0 0 1 8
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The Simplex Method

Pivoting: Choose the pivot column, then the pivot element.

If we choose to replace s2:

p x y s1 s2 s3 Constant

1 0 -30 0 40 0 640
0 0 2 1 -1 0 8
0 1 0 0 1 0 16
0 0 1 0 0 1 8

New basis:
s1 x s3
1 0 0
0 1 0
0 0 1


Thus x = 16, y = 0, s1 = 8, s2 = 0, s3 = 8
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The Simplex Method

Pivoting: Choose the pivot column, then the pivot element.

So how do we choose the pivot element?

Pick the positive elements in the pivot column,
Divide the constant column by these elements,
Select the element corresponding to the smallest quotient as pivot
element
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The Simplex Method

Pivoting: Choose the pivot column, then the pivot element.

p x y s1 s2 s3 Constant

1 -40 -30 0 0 0 0
0 1 2 1 0 0 24 24/1
0 1 0 0 1 0 16 16/1
0 0 1 0 0 1 8
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The Simplex Method

A second move:

p x y s1 s2 s3 Constant

1 0 -30 0 40 0 640
0 0 2 1 -1 0 8
0 1 0 0 1 0 16
0 0 1 0 0 1 8
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The Simplex Method

A second move:

p x y s1 s2 s3 Constant

1 0 -30 0 40 0 640
0 0 2 1 -1 0 8
0 1 0 0 1 0 16
0 0 1 0 0 1 8
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The Simplex Method

A second move:

p x y s1 s2 s3 Constant

1 0 -30 0 40 0 640 30R2/2 + R1

0 0 2 1 -1 0 8 R2/2
0 1 0 0 1 0 16
0 0 1 0 0 1 8 R4 − R2/2
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The Simplex Method

A second move:

p x y s1 s2 s3 Constant

1 0 0 15 25 0 760
0 0 1 1/2 -1/2 0 4
0 1 0 0 1 0 16
0 0 0 -1/2 1/2 1 4

New basis:
y x s3
1 0 0
0 1 0
0 0 1


Thus x = 16, y = 4, s1 = 0, s2 = 0, s3 = 8
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The Simplex Method

A second move:

p x y s1 s2 s3 Constant

1 0 0 15 25 0 760
0 0 1 1/2 -1/2 0 4
0 1 0 0 1 0 16
0 0 0 -1/2 1/2 1 4

New basis:
y x s3
1 0 0
0 1 0
0 0 1


Thus x = 16, y = 4, s1 = 0, s2 = 0, s3 = 8

Since there are no more negative entries in the first row, we
have reached the optimal solution
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A minimization problem

min x + 4y

subject to:

x + 2y ≥ 8
3x + 2y ≥ 12
x ≥ 0
y ≥ 0
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Graphical view

y

x

C1C2

(0,6)

(2,3)

(8,0)
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Step 1: Transformation

min x + 4y

subject to:

x + 2y − s1 = 8
3x + 2y − s2 = 12
x ≥ 0
y ≥ 0
s1, s2 ≥ 0
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Step 2: Matrix Form

[
1 2 −1 0
3 2 0 −1

] 
x
y
s1
s2

 =

[
8

12

]

If x = y = 0, then s1 = −8, and s2 = −12, which violates the
nonnegativity restrictions on s1, s2.
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Step 1: Transformation

Add artificial variables a1, a2

min x + 4y + 1000a1 + 1000a2

subject to:

x + 2y − s1 + a1 = 8
3x + 2y − s2 + a2 = 12
x ≥ 0
y ≥ 0
s1, s2 ≥ 0
a1, a2 ≥ 0
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Step 2: Matrix Form

[
1 2 −1 0 1 0
3 2 0 −1 0 1

]


x
y
s1
s2
a1
a2

 =

[
8

12

]

If x = y = s1 = s2 = 0, then a1 = 8, and a2 = 12, which gives us
an easy starting point.
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Step 3: Simplex Tableau

Simplex tableau:

p x y s1 s2 a1 a2 Constant

1 -1 -4 0 0 -1000 -1000 0
0 1 2 -1 0 1 0 8
0 3 2 0 -1 0 1 12
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Step 3: Simplex Tableau

Simplex tableau:

p x y s1 s2 a1 a2 Constant

1 -1 -4 0 0 -1000 -1000 0 1000(R2 + R3) + R1

0 1 2 -1 0 1 0 8
0 3 2 0 -1 0 1 12
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Step 3: Simplex Tableau

Simplex tableau:

p x y s1 s2 a1 a2 Constant

1 3999 3996 -1000 -1000 0 0 20000
0 1 2 -1 0 1 0 8
0 3 2 0 -1 0 1 12
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Step 4: Pivoting

For minimization, choose the column associated with largest
positive element in R1.

p x y s1 s2 a1 a2 Constant

1 3999 3996 -1000 -1000 0 0 20000
0 1 2 -1 0 1 0 8
0 3 2 0 -1 0 1 12
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Step 4: Pivoting

For minimization, choose the column associated with largest
positive element in R1.

p x y s1 s2 a1 a2 Constant

1 3999 3996 -1000 -1000 0 0 20000
0 1 2 -1 0 1 0 8
0 3 2 0 -1 0 1 12
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Step 5: Basis Update

p x y s1 s2 a1 a2 Constant

1 3999 3996 -1000 -1000 0 0 20000 R1 − 3999R3/3
0 1 2 -1 0 1 0 8 R2 − R3/3
0 3 2 0 -1 0 1 12 R3/3
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Step 5: Basis Update

p x y s1 s2 a1 a2 Constant

1 0 1330 -1000 333 0 -1333 4004
0 0 4/3 -1 1/3 1 -1/3 4
0 1 2/3 0 -1/3 0 1/3 4

New basis: a1 x
1 0
0 1


Thus x = 4, y = 0, s1 = 0, s2 = 0, a1 = 4, a2 = 0
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Step 4: Pivoting

p x y s1 s2 a1 a2 Constant

1 0 1330 -1000 333 0 -1333 4004
0 0 4/3 -1 1/3 1 -1/3 4
0 1 2/3 0 -1/3 0 1/3 4
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Step 4: Pivoting

p x y s1 s2 a1 a2 Constant

1 0 1330 -1000 333 0 -1333 4004
0 0 4/3 -1 1/3 1 -1/3 4
0 1 2/3 0 -1/3 0 1/3 4
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Step 5: Basis Update

p x y s1 s2 a1 a2 Constant

1 0 1330 -1000 333 0 -1333 4004 R1 − 1330(3R2/4)
0 0 4/3 -1 1/3 1 -1/3 4 3R2/4
0 1 2/3 0 -1/3 0 1/3 4 R3 − 2/3(3R2/4)
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Step 5: Basis Update

p x y s1 s2 a1 a2 Constant

1 0 0 -5/2 1/2 -1995/2 -2001/2 14
0 0 1 -3/4 1/4 3/4 -1/4 3
0 1 0 -1/2 -1/2 -1/2 -1/6 2

New basis: y x
1 0
0 1


Thus x = 2, y = 3, s1 = 0, s2 = 0, a1 = 0, a2 = 0
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Graphical view

y

x

C1C2

(0,6)

(2,3)

(8,0)
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Finish the example
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