MATH529 - Fundamentals of Optimization
 Fundamentals of Constrained Optimization V: Linear Programming and the Simplex Method

Marco A. Montes de Oca
Mathematical Sciences, University of Delaware, USA

Methods for Constrained Optimization

Optimization Algorithms exploit the structure of the problem:

- Linear Programs: Simplex Method, Interior-point Method, ...
- Nonlinear Programs: Sequential Quadratic Programming, Penalty Methods, ...

Linear Programming

Definition

A linear program is one with linear objective function and linear constraints, which may include equality and inequality constraints.

Example:

$$
\begin{gathered}
\min -4 x_{1}+2 x_{2}-2 x_{3}+13 x_{4}, \\
\text { subject to } x_{1}+x_{2} \geq 3, x_{1}-x_{3}+x_{4}=3, x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{gathered}
$$

Linear Programming

Appeal:

- It is often easier (and more appropriate) to model problems as linear programs
- KKT conditions are valid
- The feasible set is a polytope (a convex, connected, set with flat, polygonal faces).
- The solution is found at extreme points, thus reducing the search space to specific regions of the feasible set.
- A local optimum will also be a global optimum.

Linear Programming: Toward a solution method

Interior, boundary, extreme points:

Linear Programming: Toward a solution method

Supporting hyperplanes:

A supporting hyperplane H has one or more points in common with a convex set F, but F lies completely one one side of H.

Linear Programming: Toward a solution method

- Theorem 1: Given \mathbf{u}, a boundary point of a closed convex set, there is at least one supporting hyperplane at \mathbf{u}.
- Theorem 2: For a closed convex set bounded from below, there is at least one extreme point in every supporting hyperplane.

Since in linear programming the objective function is linear, the hyperplane corresponding to the optimal value of the function will be a supporting hyperplane of the feasible set.

Linear Programming: Toward a solution method

- Theorem 1: Given \mathbf{u}, a boundary point of a closed convex set, there is at least one supporting hyperplane at \mathbf{u}.
- Theorem 2: For a closed convex set bounded from below, there is at least one extreme point in every supporting hyperplane.

Since in linear programming the objective function is linear, the hyperplane corresponding to the optimal value of the function will be a supporting hyperplane of the feasible set.

We can therefore pay attention only to extreme points!

Linear Programming: Toward a solution method

Example:
$\max 40 x+30 y$
subject to:
$x+2 y \leq 24$
$0 \leq x \leq 16$
$0 \leq y \leq 8$

Linear Programming: Toward a solution method

Linear Programming: Toward a solution method

Dummy variables: Slacks and Surpluses:

Linear Programming: Toward a solution method

Dummy variables: Slacks and Surpluses:

With the inexact satisfaction of a constraint, there is a slack or surplus related to one or more constraints.

Linear Programming: Toward a solution method

Step 1: Transforming the program:
$\max p=40 x+30 y+0 s_{1}+0 s_{2}+0 s_{3}+0 s_{4}+0 s_{5}$
subject to:
$x+2 y+s_{1}=24$
$x+s_{2}=16$
$y+s_{3}=8$
$x-s_{4}=0$ *
$y-s_{5}=0$ *
$x, y, s_{1}, s_{2}, s_{3}, s_{4}, s_{5} \geq 0$
*For surpluses, we add $-s_{i}$, with $s_{i} \geq 0$.

Linear Programming: Toward a solution method

Step 1: Transforming the program:
$\max p=40 x+30 y$
subject to:
$x+2 y+s_{1}=24$
$x+s_{2}=16$
$y+s_{3}=8$
$x, y, s_{1}, s_{2}, s_{3} \geq 0$

Linear Programming: Toward a solution method

Step 2: Generating extreme points:

$$
\left[\begin{array}{lllll}
1 & 2 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right]=\left[\begin{array}{c}
24 \\
16 \\
8
\end{array}\right]
$$

Linear Programming: Toward a solution method

Step 2: Generating extreme points:

$$
\left[\begin{array}{lllll}
1 & 2 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right]=\left[\begin{array}{c}
24 \\
16 \\
8
\end{array}\right]
$$

Let $x=y=0$, then

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right]=\left[\begin{array}{c}
24 \\
16 \\
8
\end{array}\right]
$$

That is $s_{1}=24, s_{2}=16$, and $s_{3}=8$.

Linear Programming: Toward a solution method

Linear Programming: Toward a solution method

Step 2: Generating extreme points:

$$
\left[\begin{array}{lllll}
1 & 2 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right]=\left[\begin{array}{c}
24 \\
16 \\
8
\end{array}\right]
$$

Let $x=s_{1}=0$, then

$$
\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
y \\
s_{2} \\
s_{3}
\end{array}\right]=\left[\begin{array}{c}
24 \\
16 \\
8
\end{array}\right]
$$

That is $y=12, s_{2}=16$, and $s_{3}=-4$. (Violates nonnegativity restrictions!)

Linear Programming: Toward a solution method

Step 2: Generating extreme points:

$$
\left[\begin{array}{lllll}
1 & 2 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right]=\left[\begin{array}{c}
24 \\
16 \\
8
\end{array}\right]
$$

Let $x=s_{2}=0$, then

$$
\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 0 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
y \\
s_{1} \\
s_{3}
\end{array}\right]=\left[\begin{array}{c}
24 \\
16 \\
8
\end{array}\right]
$$

Invalid system!

Linear Programming: Toward a solution method

Step 2: Generating extreme points:

$$
\left[\begin{array}{lllll}
1 & 2 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right]=\left[\begin{array}{c}
24 \\
16 \\
8
\end{array}\right]
$$

Let $x=s_{3}=0$, then

$$
\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
y \\
s_{1} \\
s_{2}
\end{array}\right]=\left[\begin{array}{c}
24 \\
16 \\
8
\end{array}\right]
$$

That is $y=8, s_{2}=16$, and $s_{3}=8$.

Linear Programming: Toward a solution method

Linear Programming: Toward a solution method

Step 2: Generating extreme points:

$$
\left[\begin{array}{lllll}
1 & 2 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right]=\left[\begin{array}{c}
24 \\
16 \\
8
\end{array}\right]
$$

Let $s_{1}=s_{3}=0$, then

$$
\left[\begin{array}{lll}
1 & 2 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
s_{2}
\end{array}\right]=\left[\begin{array}{c}
24 \\
16 \\
8
\end{array}\right]
$$

That is $x=8, y=8$, and $s_{2}=8$.

Linear Programming: Toward a solution method

Linear Programming: Toward a solution method

We now have a method to systematically generate extreme points. But there are a few remaining questions:

- How to select which columns to eliminate so that we generate as few extreme points as possible?
- How can we use the objective function to guide the search?
- How to avoid generating invalid moves?

The Simplex Method

George B. Dantzig

The idea behind the Simplex Method

The Simplex Method

Simplex tableau:

p	x	y	s_{1}	s_{2}	s_{3}	Constant
1	-40	-30	0	0	0	0
0	1	2	1	0	0	24
0	1	0	0	1	0	16
0	0	1	0	0	1	8

Basis at $(0,0)$:

$$
\left[\begin{array}{ccc}
s_{1} & s_{2} & s_{3} \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Pivoting: Choose the pivot column, then the pivot element.

p	x	y	s_{1}	s_{2}	s_{3}	Constant
1	-40	-30	0	0	0	0
0	1	2	1	0	0	24
0	1	0	0	1	0	16
0	0	1	0	0	1	8

Pivoting: Choose the pivot column, then the pivot element.
Choose the column associated with the negative entry with the largest abs. value

p	x	y	s_{1}	s_{2}	s_{3}	Constant
1	$-\mathbf{4 0}$	-30	0	0	0	0
0	$\mathbf{1}$	2	1	0	0	24
0	$\mathbf{1}$	0	0	1	0	16
0	$\mathbf{0}$	1	0	0	1	8

The Simplex Method

Pivoting: Choose the pivot column, then the pivot element.
If we choose to replace s_{1} :

p	x	y	s_{1}	s_{2}	s_{3}	Constant	
1	-40	-30	0	0	0	0	$40 R_{2}+R_{1}$
0	$\mathbf{1}$	2	1	0	0	24	
0	1	0	0	1	0	16	$R_{2}-R_{3}$
0	0	1	0	0	1	8	

Pivoting: Choose the pivot column, then the pivot element.
If we choose to replace s_{1} :

p	x	y	s_{1}	s_{2}	s_{3}	Constant
1	0	50	40	0	0	960
0	$\mathbf{1}$	2	1	0	0	24
0	0	2	1	-1	0	8
0	0	1	0	0	1	8

New basis:

$$
\left[\begin{array}{ccc}
x & s_{2} & s_{3} \\
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Thus $x=24, y=0, s_{1}=0, s_{2}=-8, s_{3}=8$

Pivoting: Choose the pivot column, then the pivot element.
If we choose to replace s_{1} :

p	x	y	s_{1}	s_{2}	s_{3}	Constant
1	0	50	40	0	0	960
0	$\mathbf{1}$	2	1	0	0	24
0	0	2	1	-1	0	8
0	0	1	0	0	1	8

New basis:

$$
\left[\begin{array}{ccc}
x & s_{2} & s_{3} \\
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Thus $x=24, y=0, s_{1}=0, s_{2}=-8, s_{3}=8$
Invalid move!

The Simplex Method

Pivoting: Choose the pivot column, then the pivot element.
If we choose to replace s_{2} :

p	x	y	s_{1}	s_{2}	s_{3}	Constant	
1	-40	-30	0	0	0	0	$40 R_{3}+R_{1}$
0	1	2	1	0	0	24	$R_{2}-R_{3}$
0	1	0	0	1	0	16	
0	0	1	0	0	1	8	

Pivoting: Choose the pivot column, then the pivot element.
If we choose to replace s_{2} :

p	x	y	s_{1}	s_{2}	s_{3}	Constant
1	0	-30	0	40	0	640
0	0	2	1	-1	0	8
0	$\mathbf{1}$	0	0	1	0	16
0	0	1	0	0	1	8

New basis:

$$
\left[\begin{array}{ccc}
s_{1} & x & s_{3} \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Thus $x=16, y=0, s_{1}=8, s_{2}=0, s_{3}=8$

Pivoting: Choose the pivot column, then the pivot element.
So how do we choose the pivot element?
Pick the positive elements in the pivot column, Divide the constant column by these elements, Select the element corresponding to the smallest quotient as pivot element

Pivoting: Choose the pivot column, then the pivot element.

p	x	y	s_{1}	s_{2}	s_{3}	Constant	
1	-40	-30	0	0	0	0	
0	1	2	1	0	0	24	$24 / 1$
0	1	0	0	1	0	16	$16 / 1$
0	0	1	0	0	1	8	

The Simplex Method

A second move:

p	x	y	s_{1}	s_{2}	s_{3}	Constant
1	0	-30	0	40	0	640
0	0	2	1	-1	0	8
0	1	0	0	1	0	16
0	0	1	0	0	1	8

The Simplex Method

A second move:

p	x	y	s_{1}	s_{2}	s_{3}	Constant
1	0	$\mathbf{- 3 0}$	0	40	0	640
0	0	$\mathbf{2}$	1	-1	0	8
0	1	$\mathbf{0}$	0	1	0	16
0	0	$\mathbf{1}$	0	0	1	8

The Simplex Method

A second move:

p	x	y	s_{1}	s_{2}	s_{3}	Constant	
1	0	-30	0	40	0	640	$30 R_{2} / 2+R_{1}$
0	0	$\mathbf{2}$	1	-1	0	8	$R_{2} / 2$
0	1	0	0	1	0	16	
0	0	1	0	0	1	8	$R_{4}-R_{2} / 2$

The Simplex Method

A second move:

p	x	y	s_{1}	s_{2}	s_{3}	Constant
1	0	0	15	25	0	760
0	0	1	$1 / 2$	$-1 / 2$	0	4
0	1	0	0	1	0	16
0	0	0	$-1 / 2$	$1 / 2$	1	4

New basis:

$$
\left[\begin{array}{lll}
y & x & s_{3} \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Thus $x=16, y=4, s_{1}=0, s_{2}=0, s_{3}=8$

A second move:

p	x	y	s_{1}	s_{2}	s_{3}	Constant
1	0	0	15	25	0	760
0	0	1	$1 / 2$	$-1 / 2$	0	4
0	1	0	0	1	0	16
0	0	0	$-1 / 2$	$1 / 2$	1	4

New basis:

$$
\left[\begin{array}{ccc}
y & x & s_{3} \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Thus $x=16, y=4, s_{1}=0, s_{2}=0, s_{3}=8$
Since there are no more negative entries in the first row, we have reached the optimal solution

A minimization problem

$\min x+4 y$
subject to:
$x+2 y \geq 8$
$3 x+2 y \geq 12$
$x \geq 0$
$y \geq 0$

Graphical view

Step 1: Transformation

$\min x+4 y$
subject to:

$$
\begin{aligned}
& x+2 y-s_{1}=8 \\
& 3 x+2 y-s_{2}=12 \\
& x \geq 0 \\
& y \geq 0 \\
& s_{1}, s_{2} \geq 0
\end{aligned}
$$

Step 2: Matrix Form

$$
\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
3 & 2 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
s_{1} \\
s_{2}
\end{array}\right]=\left[\begin{array}{c}
8 \\
12
\end{array}\right]
$$

If $x=y=0$, then $s_{1}=-8$, and $s_{2}=-12$, which violates the nonnegativity restrictions on s_{1}, s_{2}.

Step 1: Transformation

Add artificial variables $\mathbf{a}_{1}, \mathbf{a}_{\mathbf{2}}$
$\min x+4 y+1000 a_{1}+1000 a_{2}$
subject to:
$x+2 y-s_{1}+a_{1}=8$
$3 x+2 y-s_{2}+a_{2}=12$
$x \geq 0$
$y \geq 0$
$s_{1}, s_{2} \geq 0$
$a_{1}, a_{2} \geq 0$

Step 2: Matrix Form

$$
\left[\begin{array}{cccccc}
1 & 2 & -1 & 0 & 1 & 0 \\
3 & 2 & 0 & -1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
s_{1} \\
s_{2} \\
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
8 \\
12
\end{array}\right]
$$

If $x=y=s_{1}=s_{2}=0$, then $a_{1}=8$, and $a_{2}=12$, which gives us an easy starting point.

Step 3: Simplex Tableau

Simplex tableau:

p	x	y	s_{1}	s_{2}	a_{1}	a_{2}	Constant
1	-1	-4	0	0	-1000	-1000	0
0	1	2	-1	0	1	0	8
0	3	2	0	-1	0	1	12

Step 3: Simplex Tableau

Simplex tableau:

p	x	y	s_{1}	s_{2}	a_{1}	a_{2}	Constant	
1	-1	-4	0	0	-1000	-1000	0	$1000\left(R_{2}+R_{3}\right)+R_{1}$
0	1	2	-1	0	1	0	8	
0	3	2	0	-1	0	1	12	

Step 3: Simplex Tableau

Simplex tableau:

p	x	y	s_{1}	s_{2}	a_{1}	a_{2}	Constant
1	3999	3996	-1000	-1000	0	0	20000
0	1	2	-1	0	1	0	8
0	3	2	0	-1	0	1	12

Step 4: Pivoting

For minimization, choose the column associated with largest positive element in R_{1}.

p	x	y	s_{1}	s_{2}	a_{1}	a_{2}	Constant
1	$\mathbf{3 9 9 9}$	3996	-1000	-1000	0	0	20000
0	$\mathbf{1}$	2	-1	0	1	0	8
0	$\mathbf{3}$	2	0	-1	0	1	12

Step 4: Pivoting

For minimization, choose the column associated with largest positive element in R_{1}.

p	x	y	s_{1}	s_{2}	a_{1}	a_{2}	Constant
1	3999	3996	-1000	-1000	0	0	20000
0	1	2	-1	0	1	0	8
0	3	2	0	-1	0	1	12

Step 5: Basis Update

p	x	y	s_{1}	s_{2}	a_{1}	a_{2}	Constant	
1	3999	3996	-1000	-1000	0	0	20000	$R_{1}-3999 R_{3} / 3$
0	1	2	-1	0	1	0	8	$R_{2}-R_{3} / 3$
0	3	2	0	-1	0	1	12	$R_{3} / 3$

Step 5: Basis Update

p	x	y	s_{1}	s_{2}	a_{1}	a_{2}	Constant
1	0	1330	-1000	333	0	-1333	4004
0	0	$4 / 3$	-1	$1 / 3$	1	$-1 / 3$	4
0	1	$2 / 3$	0	$-1 / 3$	0	$1 / 3$	4

New basis:

$$
\left[\begin{array}{cc}
a_{1} & x \\
1 & 0 \\
0 & 1
\end{array}\right]
$$

Thus $x=4, y=0, s_{1}=0, s_{2}=0, a_{1}=4, a_{2}=0$

Step 4: Pivoting

p	x	y	s_{1}	s_{2}	a_{1}	a_{2}	Constant
1	0	$\mathbf{1 3 3 0}$	-1000	333	0	-1333	4004
0	0	$\mathbf{4 / 3}$	-1	$1 / 3$	1	$-1 / 3$	4
0	1	$\mathbf{2 / 3}$	0	$-1 / 3$	0	$1 / 3$	4

Step 4: Pivoting

p	x	y	s_{1}	s_{2}	a_{1}	a_{2}	Constant
1	0	1330	-1000	333	0	-1333	4004
0	0	$4 / 3$	-1	$1 / 3$	1	$-1 / 3$	4
0	1	$2 / 3$	0	$-1 / 3$	0	$1 / 3$	4

Step 5: Basis Update

p	x	y	s_{1}	s_{2}	a_{1}	a_{2}	Constant	
1	0	1330	-1000	333	0	-1333	4004	$R_{1}-1330\left(3 R_{2} / 4\right.$
0	0	$4 / 3$	-1	$1 / 3$	1	$-1 / 3$	4	$3 R_{2} / 4$
0	1	$2 / 3$	0	$-1 / 3$	0	$1 / 3$	4	$R_{3}-2 / 3\left(3 R_{2} / 4\right.$

Step 5: Basis Update

p	x	y	s_{1}	s_{2}	a_{1}	a_{2}	Constant
1	0	0	$-5 / 2$	$1 / 2$	$-1995 / 2$	$-2001 / 2$	14
0	0	1	$-3 / 4$	$1 / 4$	$3 / 4$	$-1 / 4$	3
0	1	0	$-1 / 2$	$-1 / 2$	$-1 / 2$	$-1 / 6$	2

New basis:

$$
\left[\begin{array}{ll}
y & x \\
1 & 0 \\
0 & 1
\end{array}\right]
$$

Thus $x=2, y=3, s_{1}=0, s_{2}=0, a_{1}=0, a_{2}=0$

Graphical view

Finish the example

