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Line Search vs. Trust Region

@ Line Search

o Select a search (descent) direction p.
e Select step size v to ensure sufficient descent along
f(xk + axpy).
e Move to new point Xx11 = Xk + QkPy-
@ Trust Region
o Build model my of f at x. (Similar to Newton's method.)
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e Solve p;, = ';nelﬂgn me(p)=fc+gip+ L Bip s.t.

Ipl| < Ak
o If predicted decrease is good enough, then X411 = Xk + Pg.
Otherwise, xx11 = X, and improve the model.
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Acceptance criterion

To measure how well the predicted decrease matches the actual
decrease, we use:
f(Xk) - f(Xk + pk)

m(0) — mi(pk)

Pk =

Given that my(0) — mk(py) > 0, if px < O then the predicted
reduction is not obtained, the step is rejected and Ay is decreased.
If px = 1, then accept p, and increase Ay.

If px > 0 but not =~ 1, then accept p, and do not change Ay.

If px > 0 but ~ 0, the step may be accepted or not, and Ay is
decreased.



Algorithm

Inttialization: k =0, Ag > 0, and x¢ by educated guess. Set

ng € (0,1) (typically, ng = 0.9), 1, € (0,7n4) (typically, 5, = 0.1),
ve > 1 (typically, ve = 2), and s € (0,1) (typically, vs = 0.5).
Until convergence do:

Build model my(p).

Solve trust region subproblem (result in py)

Test acceptance criterion (result in p).

If px > ng, then X441 = X + Py and A1 = YDy

Else If px > n,, then xi 11 = Xk + Py

Else If px < m,, then Api1 = vsAg

Increase k by one



Solving the trust region subproblem approximately

We want to solve the subproblem as efficiently as possible.

We want a solution that at least decreases the model as much as
the steepest descent would subject to the size of the trust region.



Solving the trust region subproblem approximately

Figure 5.9. The trust region subproblern The arrow represents the direction of
steepest descent and x is the Cauchy point., The dotted curve repre-
sents the solutions of the subproblem for various values of Ag.

From Ruszczyriski A. “Nonlinear Optimization” pp. 268. Princeton
University Press. 2006.

6/23



Cauchy Point

The Cauchy point can be found by minimizing the model along a
line segment.

Thus, let p} = —Akllgﬁ. (Point at the border of the trust region
in the direction of steepest descent.)

The Cauchy point is p§ = 7«pj = _TkAngill'

To find 7, consider

g(7) = m(7p}) = fi + g (TP}) + 3(7P}) " Bu(7p})
mi(TP}) = fi + 78] P} + 5 (P}) T Bip}
Differentiating wrt 7:

0=g'(1) = g[pi + T(pf()Tkaf(, which means that



___gp
Tk = (ps)Tkak (1)
Substituting p; = Akllg T in (1):
8«
e BCAaED 1 lmd o ligdP
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However, there may be two problems:

a) T > Ay, or
b) g/ Bkg, < 0, that is, By is not positive definite.

So, we define the Cauchy point as follows:

Definition (Cauchy Point)

p,f = TkP} = 7TkAkH§ﬁ, where
v = 1 if g Bkgy <0, or 7% = min{1, Aikg”k?kkllgi} otherwise.




Cauchy step is a baseline of performance

@ A reduction at least as good as the one obtained with the
Cauchy step guarantees that the trust-region method is
convergent.

@ The Cauchy step is just a steepest descent step with fixed
length (Ag). (Thus, it is inefficient.)

@ The direction of the Cauchy step does not depend directly on
By, which means that curvature information is not exploited
in its calculation.



Improvements over Cauchy step

The main idea is to incorporate information provided by the “full
step” (Newton step for the local model my): p2 = —B, g,
whenever ||pB|| < Ax.

Dogleg Method

Let p} be the solution to the subproblem. If A > ||pZ]|, then
p; = p5. If, however, A, << ||pg|

s A B
. then pj ~ pL = —Buyg -

The idea of the dogleg method is to combine these two directions
and search the minimum of the model along the resulting path

p(7):

500) TPy 0<r<1,
p(7) =
pl + (T —1)(pF —pY) 1<7<2
g8
where 0 < 7 < 2, and pg = —_3k2k g, e, the steepest descent

ngBkgk
step with exact length (see that if ||pS|| < Ak, pY = p§).
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Dogleg Method

- ", Trust region

Optimal trajectory p(A)

f ~
PY (uncoristrained min along —g)—"." Tl

dogleg path

Adapted from Nocedal J. and Wright S. “Numerical Optimization”
2nd. Ed. pp. 74. Springer. 2006.
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Dogleg Method

If By is positive definite, m(p(7)) is a decreasing function of 7
(Lemma 4.2, page 75). Therefore:

The minimum along p(7) is attained at 7 = 2 if ||pB|| < A,.

If [|p2|| > Ak, we need to find 7 such that ||p(7)|| = Ax.
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Dogleg Method

Example: f(x,y) = x? + 10y?
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2D Subspace Minimization

The dogleg is completely contained in the plane spanned by p,‘(/
and p&. Therefore, one may extend the search to the whole
subspace spanned by pkU and pf, span[p,t(j, pf].
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2D Subspace Minimization

Given span[p{, p2] = {v|ap! + bpZ}, a, b € R. The subproblem
is thus:

. 1
min | i+ (apy + bpg) " Vi + S (api + bpid) " Bi(apy + bpy)

st. |lap + bpZ|| < Ak,

which can be solved using tools from constrained optimization.
(To be discussed after break.)
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Issues
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Indefinite Hessians

Problem: Newton's step may not be decreasing.

Example: Newton's step solves the system Hf,p = —Vf,. Now,
10 0 O
0 3 0

p=—(1,-3,2)7 =(-1,3,-2)7. Thus,
0 0 -1

p = (—1/10,1,2). However, p" V£, > 0, thus p is not a descent
direction.

Solution approaches:

@ Replace negative eigenvalues by some small positive number

@ Replace negative eigenvalues by their negative.
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Replace negative eigenvalues by some small positive
number

—_
o
o O

Now Hf, = ,sop' Vi <0, butp=7

o O
O W o
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Replace negative eigenvalues by some small positive
number

—_
o
o O

Now Hf, = ,sop' Vi <0, butp=7

o O
O W o
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Replace negative eigenvalues by their negative

—_

0

Now Hf, = 0
0

O W o
= O O

),sopTka<0, butp=7
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In practice

Perturb By with £/ such that:

o (Bx+Blp=—g
o A(Ak — [[pl)) =0, and
@ By + Bl is positive semidefinite.

with 8 € (—A1, —2A1], where A; is the most negative eigenvalue of
B.
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Further improvements

@ lterative solution of the subproblem: To avoid direct Hessian
manipulation.

@ Scaling: ||Dp|| < Ak. This created elliptical trust regions,
which reduce the problem of different scaling of some
variables.



Other methods

@ Conjugate Gradient Methods: A set of nonzero vectors
{PgsP1,---,---P,} are conjugate wrt to a symmetric positive
definite matrix A if p,-TApj =0, for all i # j.

@ Quasi-Newton Methods: Use changes in gradient information
to estimate a model of the function in order to achive
superlinear convergence. Example: Byriakp, = Vsl — Vi
(BFGS Method).

@ Derivative-free methods.

@ Heuristic methods.
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