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Line Search vs. Trust Region

Line Search

Select a search (descent) direction pk .
Select step size αk to ensure sufficient descent along
f (xk + αkpk).
Move to new point xk+1 = xk + αkpk .

Trust Region

Build model mk of f at xk . (Similar to Newton’s method.)

Solve pk = min
p∈Rn

mk(p) = fk + gT
k p +

1

2
pTBkp s.t.

||p|| ≤ ∆k

If predicted decrease is good enough, then xk+1 = xk + pk .
Otherwise, xk+1 = xk and improve the model.
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Acceptance criterion

To measure how well the predicted decrease matches the actual
decrease, we use:

ρk =
f (xk)− f (xk + pk)

mk(0)−mk(pk)
.

Given that mk(0)−mk(pk) > 0, if ρk < 0 then the predicted
reduction is not obtained, the step is rejected and ∆k is decreased.
If ρk ≈ 1, then accept pk and increase ∆k .
If ρk > 0 but not ≈ 1, then accept pk and do not change ∆k .
If ρk > 0 but ≈ 0, the step may be accepted or not, and ∆k is
decreased.
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Algorithm

Inttialization: k = 0, ∆0 > 0, and x0 by educated guess. Set
ηg ∈ (0, 1) (typically, ηg = 0.9), ηa ∈ (0, ηg ) (typically, ηa = 0.1),
γe ≥ 1 (typically, γe = 2), and γs ∈ (0, 1) (typically, γs = 0.5).

Until convergence do:

Build model mk(p).

Solve trust region subproblem (result in pk)

Test acceptance criterion (result in ρk).

If ρk ≥ ηg , then xk+1 = xk + pk and ∆k+1 = γe∆k

Else If ρk ≥ ηa, then xk+1 = xk + pk

Else If ρk < ηa, then ∆k+1 = γs∆k

Increase k by one
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Solving the trust region subproblem approximately

We want to solve the subproblem as efficiently as possible.

We want a solution that at least decreases the model as much as
the steepest descent would subject to the size of the trust region.

5 / 23



Solving the trust region subproblem approximately

From Ruszczyński A. “Nonlinear Optimization” pp. 268. Princeton
University Press. 2006.
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Cauchy Point

The Cauchy point can be found by minimizing the model along a
line segment.

Thus, let psk = −∆k
gk
||gk ||

. (Point at the border of the trust region

in the direction of steepest descent.)

The Cauchy point is pCk = τkp
s
k = −τk∆k

gk
||gk ||

.

To find τk , consider
g(τ) = mk(τpsk) = fk + gTk (τpsk) + 1

2 (τpsk)TBk(τpsk)

mk(τpsk) = fk + τgTk p
s
k + τ2

2 (psk)TBkp
s
k

Differentiating wrt τ :

0 = g ′(τ) = gTk p
s
k + τ(psk)TBkp

s
k , which means that
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Cauchy Point

τk = − gT
k ps

k

(ps
k )TBkps

k
. (1)

Substituting psk = −∆k
gk
||gk ||

in (1):

τk = −
gkT (−∆k

gk
||gk ||

)

(−∆k
gk

||gk ||
)TBk (−∆k

gk
||gk ||

)
= 1

∆k

||gk||
1

||gk||2
(gT

k Bkgk )
= 1

∆k

||gk||3
gT

k Bkgk
.

However, there may be two problems:

a) τk > ∆k , or
b) gTk Bkgk ≤ 0, that is, Bk is not positive definite.

So, we define the Cauchy point as follows:

Definition (Cauchy Point)

pCk = τkp
s
k = −τk∆k

gk
||gk ||

, where

τk = 1 if gTk Bkgk ≤ 0, or τk = min{1, 1
∆k

||gk||3
gT

k Bkgk
} otherwise.
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Cauchy step is a baseline of performance

A reduction at least as good as the one obtained with the
Cauchy step guarantees that the trust-region method is
convergent.

The Cauchy step is just a steepest descent step with fixed
length (∆k). (Thus, it is inefficient.)

The direction of the Cauchy step does not depend directly on
Bk , which means that curvature information is not exploited
in its calculation.
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Improvements over Cauchy step

The main idea is to incorporate information provided by the “full
step” (Newton step for the local model mk): pBk = −B−1

k gk
whenever ||pBk || ≤ ∆k .

Dogleg Method

Let p?k be the solution to the subproblem. If ∆k ≥ ||pBk ||, then

p?k = pBk . If, however, ∆k << ||pBk ||, then p?k ≈ psk = −∆k
gk
||gk ||

.

The idea of the dogleg method is to combine these two directions
and search the minimum of the model along the resulting path
p̃(τ):

p̃(τ) =

{
τpUk 0 ≤ τ ≤ 1,

pUk + (τ − 1)(pBk − pUk ) 1 < τ ≤ 2,

where 0 ≤ τ ≤ 2, and pUk = − gT
k gk

gT
k Bkgk

gk , i.e., the steepest descent

step with exact length (see that if ||pCk || < ∆k , pUk = pCk ).
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Dogleg Method

Adapted from Nocedal J. and Wright S. “Numerical Optimization”
2nd. Ed. pp. 74. Springer. 2006.
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Dogleg Method

If Bk is positive definite, m(p̃(τ)) is a decreasing function of τ
(Lemma 4.2, page 75). Therefore:

The minimum along p̃(τ) is attained at τ = 2 if ||pBk || ≤ ∆k .

If ||pBk || > ∆k , we need to find τ such that ||p̃(τ)|| = ∆k .

12 / 23



Dogleg Method

Example: f (x , y) = x2 + 10y2
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2D Subspace Minimization

The dogleg is completely contained in the plane spanned by pUk
and pBk . Therefore, one may extend the search to the whole
subspace spanned by pUk and pBk , span[pUk ,p

B
k ].

14 / 23



2D Subspace Minimization

Given span[pUk ,p
B
k ] = {v|apUk + bpBk }, a, b ∈ R. The subproblem

is thus:

min
a,b∈R

[
fk + (apUk + bpBk )T∇fk +

1

2
(apUk + bpBk )TBk(apUk + bpBk )

]
s.t. ||apUk + bpBk || ≤ ∆k ,

which can be solved using tools from constrained optimization.
(To be discussed after break.)
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Issues
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Indefinite Hessians

Problem: Newton’s step may not be decreasing.

Example: Newton’s step solves the system Hfkp = −∇fk . Now, 10 0 0
0 3 0
0 0 −1

p = −(1,−3, 2)T = (−1, 3,−2)T . Thus,

p = (−1/10, 1, 2). However, pT∇fk > 0, thus p is not a descent
direction.

Solution approaches:

Replace negative eigenvalues by some small positive number.

Replace negative eigenvalues by their negative.
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Replace negative eigenvalues by some small positive
number

Now Hfk =

 10 0 0
0 3 0
0 0 10−6

, so pT∇fk < 0, but p = ?
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Replace negative eigenvalues by some small positive
number

Now Hfk =

 10 0 0
0 3 0
0 0 10−6

, so pT∇fk < 0, but p = ?
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Replace negative eigenvalues by their negative

Now Hfk =

 10 0 0
0 3 0
0 0 1

, so pT∇fk < 0, but p = ?
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In practice

Perturb Bk with βI such that:

(Bk + βI )p = −g ,

β(∆k − ||p||) = 0, and

Bk + βI is positive semidefinite.

with β ∈ (−λ1,−2λ1], where λ1 is the most negative eigenvalue of
B.
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Further improvements

Iterative solution of the subproblem: To avoid direct Hessian
manipulation.

Scaling: ||Dp|| ≤ ∆k . This created elliptical trust regions,
which reduce the problem of different scaling of some
variables.
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Other methods

Conjugate Gradient Methods: A set of nonzero vectors
{p0,p1, . . . , ...pn} are conjugate wrt to a symmetric positive
definite matrix A if pTi Apj = 0, for all i 6= j .

Quasi-Newton Methods: Use changes in gradient information
to estimate a model of the function in order to achive
superlinear convergence. Example: Bk+1αkpk = ∇fk+1 −∇fk
(BFGS Method).

Derivative-free methods.

Heuristic methods.
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