University of Delaware

Department of Mathematical Sciences

MATH 243 - MIDTERM EXAM I - A — Spring 2014

Name: Lecture Section: Discussion Section:

Instructions:

e Check your examination booklet before you start.
There should be 7 items on 6 pages.

e No partial credit will be given if appropriate work is not shown.

e Answer questions in the space provided. If you need more space for an answer,
continue your answer on the back of the page, or/and use the margins of the test pages.
Do not take pages apart from the booklet.

e Carefully work out each problem and clearly indicate your final answer to any prob-
lem.

¢ You may NOT use calculators, dictionaries, notes, or any other kinds of aids.

e The duration of this exam is 75 minutes.

e DISHONESTY WILL NOT BE TOLERATED: Cheating receives a failing
grade.
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(1) Let a = (2,2,1) and let b = (1,0, 1).
(i) (5 points) Find the angle between a and b.
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(ii) (5 points) Let u = Projy,(a) be the vector projection of a onto b. Find u.
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(iil) (5 points) Find a vector in R? that is perpendicular to the vectors ¢ = (2, —1,1)
and d = (3,1, —2). .
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(2) Let L be the line with the following vector equation:
r(t) = (1 +2t,2 + 3t,3 + 4t).

(i) (8 points) Determine whether L intersects the plane = + y + 2z = 33. If it does,
find the intersection. If it does not, explain why not.
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(ii) (8 points) Determine whether L intersects the plane 3z + 2y — 3z = 2014. If it
does, find the intersection. If it does not, explain why not.
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(3) A particle moves along a curve with position at time ¢ given by r(t) = (2¢, 2, §t3)

(a) (12 points) Compute the velocity, speed, and acceleration of the particle at time
t.
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(b) (6 points) Find the length of the curve r(t) from t =1 to ¢ = 2.

:gn?‘(x\\\&k = gg{mu - ———m&l

1

g

X 1=
S

o)+ W

——
—




(4) (9 points) Find parametric equations for the tangent line to the curve r(t) = (cost, sint, )
at the point (0, 1, %2)
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(5) (9 points) A particle moves with velocity at time ¢ given by v(t) = (e*,¢,2t). If its
position at time 0 is given by r(0) = (3, —1,2), find its position r(t) at time ¢.
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(6) Let r(t) = (cos(t) + tsin(¢), sin(t) — ¢ cos(t), 0), defined for ¢ > 0.

(i) (9 points) Find the unit tangent vector, 7'(t), for this curve.
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(ii) (9 points) Find the curvature, (), for this curve.
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(7) (15 points) Let u(z,y) = sin(z — y). Show that
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