MATH529 – Fundamentals of Optimization Constrained Optimization I

Marco A. Montes de Oca

Mathematical Sciences, University of Delaware, USA

Motivating Example

Definitions

A general model of a constrained optimization problem is:

 $\min_{x\in\mathbb{R}^n}f(x)$

subject to

 $egin{aligned} c_i(x) &= 0, \quad i \in \mathcal{E} \ c_i(x) &\geq 0 \ (ext{or} \ c_i(x) &\leq 0), \quad i \in \mathcal{I} \end{aligned}$

where f is called the *objective function*, the functions $c_i(x)$, $i \in \mathcal{E}$ are the *equality constraints*, and the functions $c_i(x)$, $i \in \mathcal{I}$ are the *inequality constraints*.

Definitions

The feasible set $\Omega \subset \mathbb{R}^n$ is the set of points that satisfy the constraints:

$$\Omega = \{x \mid c_i(x) \ge 0, i \in \mathcal{I}, c_i(x) = 0, i \in \mathcal{E}\}$$

Therefore, a constrained optimization problem can be defined simply as

$$\min_{x\in\Omega}f(x)$$

7 / 26

Example: One equality constraint

Suppose you want to solve $\max f(x) = x_1x_2 + 2x_1$, subject to $g(x) = 2x_1 + x_2 = 1$.

<section-header>

Example: One equality constraint

Suppose you want to solve

 $\max f(x) = x_1 x_2 + 2x_1$,

subject to $g(x) = 2x_1 + x_2 = 1$.

Solution method 1: Substitution

From the constraint, we see that $x_2 = 1 - 2x_1$. Thus, f(x) can be rewritten as $f(x_1) = x_1(1 - 2x_1) + 2x_1$.

Example: One equality constraint

Suppose you want to solve

 $\max f(x) = x_1 x_2 + 2x_1,$

subject to $g(x) = 2x_1 + x_2 = 1$.

Solution method 1: Substitution

From the constraint, we see that $x_2 = 1 - 2x_1$. Thus, f(x) can be rewritten as $f(x_1) = x_1(1 - 2x_1) + 2x_1$.

This method works only on very few cases. E.g., it does not work when one cannot solve for one of the variables.

11/26

Example: One equality constraint

Solution method 2: Lagrange multipliers

Define the Lagrangian function:

 $Z = f(x) + \lambda(0 - c_1(x)) = x_1x_2 + 2x_1 + \lambda(1 - 2x_1 - x_2)$

where λ is a so-called Lagrange multiplier.

If the constraint is satisfied, then $c_1(x) = 0$, and Z is identical to f.

Therefore, as long as $c_1(x) = 0$, searching for the maximum of Z is the same as searching for the maximum of f.

So, how to always satisfy $c_1(x) = 0$?

Example: One equality constraint

Solution method 2: Lagrange multipliers

If $Z = Z(\lambda, x_1, x_2)$, then $\nabla Z = 0$ implies

 $\frac{\partial Z}{\partial \lambda} = 1 - 2x_1 - x_2 = 0$, or simply $c_1(x) = 0$ (the original constraint)

$$rac{\partial Z}{\partial x_1} = x_2 + 2 - 2\lambda = 0$$
, and

$$\frac{\partial Z}{\partial x_2} = x_1 - \lambda = 0$$

Solving this system: $x_1 = 3/4$, $x_2 = -1/2$, and $\lambda = 3/4$. A second order condition should be used to tell whether (3/4, -1/2) is a maximum or a minimum.

13/26

Lagrange multipliers

In general, to find an extremum x^* of f(x) subject to $c_1(x) = 0$, we define the Lagrangian function:

$$L(x,\lambda) = f(x) - \lambda c_1(x)$$

Then, $\nabla L(x^{\star}, \lambda^{\star}) = 0$ implies

 $c_1(x^*) = 0$ and $\nabla f(x^*) - \lambda^* \nabla c_1(x^*) = 0$, or equivalently $\nabla f(x^*) = \lambda^* \nabla c_1(x^*)$.

Exercise

Find all the extrema of $f(x) = x_1^2 + x_2^2$, subject to $x_1^2 + x_2 = 1$

15 / 26

Lagrange Multiplier Method: Derivation

Total differential approach:

Let z = f(x, y) (objective function) and g(x, y) = c (equality constraint). At an extremum, the first order condition translates into dz = 0, so $dz = f_x dx + f_y dy = 0$ (1). Since dx and dy are not independent (due to the constraint), we can take the differential of g as well: $dg = g_x dx + g_y dy = 0$ (2). From (2), $dx = -\frac{g_y}{g_x} dy$. Substituting dx in (1):

 $-f_x \frac{g_y}{g_x} dy + f_y dy = 0$, which implies $\frac{f_x}{g_x} = \frac{f_y}{g_y}$.

If $\frac{f_x}{g_x} = \frac{f_y}{g_y} = \lambda$, then $f_x - \lambda g_x = 0$ and $f_y - \lambda g_y = 0$, which are the Lagrange multiplier equations.

Lagrange Multiplier Method: Derivation

Taylor series approach:

If we want to satisfy the constraint as we move from x to x + s, then

$$0 = c_1(x + s) \approx c_1(x) + \nabla c_1(x)^T s$$
, but since $c_1(x) = 0$, then
 $\nabla c_1(x)^T s = 0$ (1)

Additionally, if we want to decrease the function as we move, we would require $\nabla f(x)^T s < 0$ (2).

Only when $\nabla f(x) = \lambda \nabla g(x)$, we **cannot** find *s* to satisfy (1) and (2).

Shadow Price

The Lagrange multiplier measures the sensitivity of the optimal solution to changes in the constraint. For example, assume that $\lambda = \lambda(B), x = x(B)$, and y = y(B). If you want to maximize U(x) subject to g(x) = B (so that $c_1(x) = B - g(x) = 0$). Then, $L(x, \lambda) = U(x) + \lambda(B - g(x))$. By the Chain Rule: $\frac{dL}{dB} = L_{x_1} \frac{dx_1}{dB} + L_{x_2} \frac{dx_2}{dB} + L_{\lambda} \frac{d\lambda}{dB}$

 $\frac{dB}{dB} = L_{x_1} \frac{dB}{dB} + L_{x_2} \frac{dB}{dB} + L_{\lambda} \frac{dB}{dB}$ $\frac{dL}{dB} = (U_{x_1} - \lambda g_{x_1}) \frac{dx_1}{dB} + (U_{x_2} - \lambda g_{x_2}) \frac{dx_2}{dB} + (B - g(x)) \frac{d\lambda}{dB} + \lambda(1).$

Since the first order condition says that $U_{x_1} - \lambda g_{x_1} = 0$, $U_{x_2} - \lambda g_{x_2} = 0$, and B - g(x) = 0, we have

 $\frac{dL}{dB} = \lambda$. (This equation answers the question "Will a slight relaxation of the budget constraint increase or decrease the optimal value of U?")

Example

Use the Lagrange-multiplier method to find stationary values of z = x - 3y - xy, subject to x + y = 6. Will a slight relaxation of the constraint increase or decrease the optimal value of z? At what rate?