MATH529 – Fundamentals of Optimization Duality

Marco A. Montes de Oca

Mathematical Sciences, University of Delaware, USA

Example: Maximize 3x + 4ysubject to: $x + y \le 12$ $x + 4y \le 42$ $x, y \ge 0$

Definitions

Definition (Supremum)

Let $f(\mathbf{x})$ be a real valued function on $C \subset \mathbb{R}^n$. If there is a smallest number $\beta \in \mathbb{R}$ such that $f(\mathbf{x}) \leq \beta$ for all $\mathbf{x} \in C$, then β is the *supremum* of $f(\mathbf{x})$ on C and write

$$\beta = \sup_{x \in C} f(\mathbf{x})$$

Example (1)

If \mathbf{x}^{\star} is the global maximizer of $f(\mathbf{x})$ on C, then $\sup_{x \in C} f(\mathbf{x}) = f(\mathbf{x}^{\star})$.

3/18

Definitions

Example (2)

Let $f(\mathbf{x}) = \frac{1}{x_1^2 + x_2^2}$, where $C = \{(x_1, x_2) | x_1, x_2 \in \mathbb{R}^2 \setminus \{(0, 0)\}\}$. Since $f(\mathbf{x})$ can be made as large as desired by letting $x_1 \to 0$ and $x_2 \to 0$ simultaneously, then there is no upper bound for $f(\mathbf{x})$ on C. Thus, strictly speaking, $\sup_{x \in C} f(\mathbf{x})$ does not exist. However, we will write $\sup_{x \in C} f(\mathbf{x}) = \infty$.

Example (3)

Let $f(x) = \frac{1}{1 + e^{-x}}$, where $C = \mathbb{R}$. In this case, $\sup_{x \in C} f(x) = 1$, even though here is no global maximizer on C.

Definitions
Definition (Infimum)
Let
$$f(\mathbf{x})$$
 be a real valued function on $C \subset \mathbb{R}^n$. If there is a largest
number $\alpha \in \mathbb{R}$ such that $f(\mathbf{x}) \ge \beta$ for all $\mathbf{x} \in C$, then α is the
infimum of $f(\mathbf{x})$ on C and write

$$\beta = \inf_{x \in C} f(\mathbf{x})$$

5/18

Duality

Let us formulate a general minimization problem as:

Minimize $f(\mathbf{x})$

subject to:

$$\mathbf{g}(\mathbf{x}) \ge \mathbf{0}$$

 $\mathbf{h}(\mathbf{x}) = \mathbf{0}$

The Lagrangian for this problem is therefore:

 $L(\mathbf{x}, \lambda, \mu) = f(\mathbf{x}) - \lambda^T \mathbf{g}(\mathbf{x}) - \mu^T \mathbf{h}(\mathbf{x})$, with $\lambda \in \mathbb{R}^m_+$ and $\mu \in \mathbb{R}^p$, where *m* is the number of inequality constraints and *p* is the number of equality constraints.

Definition (Primal function)

The primal function associated with the optimization problem above is:

$$L_{
ho}(\mathbf{x}) = \sup_{(oldsymbol{\lambda},oldsymbol{\mu})} L(\mathbf{x},oldsymbol{\lambda},oldsymbol{\mu})$$

Duality Definition (Dual function) The dual function associated with the optimization problem above is: $L_d(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \inf_{\mathbf{X}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})$ Example (Min $x^2 + y^2$, s.t. $1 - x^2 + y \ge 0$) 10 4 6 8 2 -5 -10-15-20 -25 - 30 - 35

The primal problem is to find

 $\min_{\mathbf{x}} L_{p}(\mathbf{x})$

and the *dual problem* is to find

 $\max_{(\boldsymbol{\lambda},\boldsymbol{\mu})} {}^{L_d}(\boldsymbol{\lambda},\boldsymbol{\mu})$

9/18

Duality

Example 1: Find the dual function associated with:

Minimize x + y

subject to:

$$x^2 + y^2 \le 1$$

Example 2:

Minimize $\mathbf{c}^T \mathbf{x}$

subject to:

 $A\mathbf{x} \ge \mathbf{b}$

 $\mathbf{x}\geq\mathbf{0}$

where A is an $m \times n$ matrix, $\mathbf{c} \in \mathbb{R}^n$, and $\mathbf{b} \in \mathbb{R}^m$.

Duality

The Lagrangian is:

$$L(\mathbf{x}, \boldsymbol{\lambda}) = \mathbf{c}^{\mathsf{T}}\mathbf{x} + \boldsymbol{\lambda}^{\mathsf{T}}(\mathbf{b} - A\mathbf{x}) = \mathbf{c}^{\mathsf{T}}\mathbf{x} + \boldsymbol{\lambda}^{\mathsf{T}}\mathbf{b} - \boldsymbol{\lambda}^{\mathsf{T}}A\mathbf{x} = (\mathbf{c} - A^{\mathsf{T}}\boldsymbol{\lambda})^{\mathsf{T}}\mathbf{x} + \boldsymbol{\lambda}^{\mathsf{T}}\mathbf{b}$$

Thus, the dual function is:

$$L_d(\lambda) = \inf_{\mathbf{x}} L(\mathbf{x}, \lambda) = \lambda^T \mathbf{b} + \inf_{\mathbf{x}} \left[(\mathbf{c} - A^T \lambda)^T \mathbf{x} \right]$$

Now,

$$\inf_{\mathbf{X}} \left[(\mathbf{c} - A^T \boldsymbol{\lambda})^T \mathbf{x} \right]$$

is bounded only when $\mathbf{c} - \mathbf{A}^T \mathbf{\lambda} \ge 0$.

12/18

 $11 \, / \, 18$

Therefore, the dual problem can be formulated as follows:

Maximize $\mathbf{b}^T \boldsymbol{\lambda}$

subject to: $A^T \lambda \leq \mathbf{c}$ $\lambda \geq \mathbf{0}$

Duality

It follows that for the optimal (λ^*, μ^*) and the optimal \mathbf{x}^* , the difference $L_p(\mathbf{x}^*) - L_d(\lambda^*, \mu^*)$, called *duality gap*, is minimal. (If the duality gap is 0, we talk about *strong duality*.)

 $18 \, / \, 18$