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Example:

Maximize 3x + 4y

subject to:

x + y ≤ 12

x + 4y ≤ 42

x , y ≥ 0
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Definitions

Definition (Supremum)

Let f (x) be a real valued function on C ⊂ Rn. If there is a
smallest number β ∈ R such that f (x) ≤ β for all x ∈ C , then β is
the supremum of f (x) on C and write

β = sup
x∈C

f (x)

Example (1)

If x? is the global maximizer of f (x) on C , then sup
x∈C

f (x) = f (x?).
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Definitions

Example (2)

Let f (x) = 1
x21+x22

, where C = {(x1, x2) | x1, x2 ∈ R2 \ {(0, 0)}}.
Since f (x) can be made as large as desired by letting x1 → 0 and
x2 → 0 simultaneously, then there is no upper bound for f (x) on
C . Thus, strictly speaking, supx∈C f (x) does not exist. However,
we will write supx∈C f (x) =∞.

Example (3)

Let f (x) =
1

1 + e−x
, where C = R. In this case, supx∈C f (x) = 1,

even though here is no global maximizer on C .
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Definitions

Definition (Infimum)

Let f (x) be a real valued function on C ⊂ Rn. If there is a largest
number α ∈ R such that f (x) ≥ β for all x ∈ C , then α is the
infimum of f (x) on C and write

β = inf
x∈C

f (x)
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Duality

Let us formulate a general minimization problem as:

Minimize f (x)

subject to:

g(x) ≥ 0

h(x) = 0

The Lagrangian for this problem is therefore:

L(x,λ,µ) = f (x)− λTg(x)− µTh(x), with λ ∈ Rm
+ and µ ∈ Rp,

where m is the number of inequality constraints and p is the
number of equality constraints.
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Duality

Definition (Primal function)

The primal function associated with the optimization problem
above is:

Lp(x) = sup
(λ,µ)

L(x,λ,µ)

Example (Min x2 + y2, s.t. 1− x2 + y ≥ 0)
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Duality

Definition (Dual function)

The dual function associated with the optimization problem above
is:

Ld(λ,µ) = inf
x

L(x,λ,µ)

Example (Min x2 + y2, s.t. 1− x2 + y ≥ 0)
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Duality

The primal problem is to find

min
x

Lp(x)

and the dual problem is to find

max
(λ,µ)

Ld(λ,µ)
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Duality

Example 1: Find the dual function associated with:

Minimize x + y

subject to:

x2 + y2 ≤ 1
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Duality

Example 2:

Minimize cTx

subject to:

Ax ≥ b

x ≥ 0

where A is an m × n matrix, c ∈ Rn, and b ∈ Rm.
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Duality

The Lagrangian is:

L(x,λ) = cTx + λT (b− Ax) =

cTx + λTb− λTAx =

(c− ATλ)Tx + λTb

Thus, the dual function is:

Ld(λ) = inf
x

L(x,λ) = λTb + inf
x

[
(c− ATλ)Tx

]

Now,

inf
x

[
(c− ATλ)Tx

]

is bounded only when c− ATλ ≥ 0.
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Duality

Therefore, the dual problem can be formulated as follows:

Maximize bTλ

subject to:

ATλ ≤ c

λ ≥ 0
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Duality

Why do we care?
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Duality

In some cases, the dual problem is easier to solve than the
original problem.

In other cases, the solution of the dual problem provides a
lower bound on the optimal value for the primal problem.

Duality theory is used to motivate and develop optimization
algorithms

In economics, the dual may have an important economic
meaning of its own.
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Duality

First main property of dual functions:

Theorem (Concavity of Ld(λ,µ))

The function Ld(λ,µ) = inf
x

L(x,λ,µ) is concave.

L1(λ)= f ( x1, y1)+λ g ( x1, y1)
L2(λ)= f (x2, y 2)+λ g (x2, y 2)

L3(λ)= f ( x3, y3)+λ g (x3, y3)

λ

L (λ )
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Duality

Second main property of dual functions:

Theorem (Weak duality (Lower bounds for objective function))

For any feasible solution x̄ and any λ̄ ≥ 0 and µ̄ ∈ Rp,
Ld(λ̄, µ̄) ≤ f (x̄).

Proof:

By definition:

Ld(λ̄, µ̄) = inf
x

L(x, λ̄, µ̄) = inf
x

(f (x)− λ̄
T
g(x)− µ̄Th(x)) ≤

f (x̄)− λ̄
T
g(x̄)−�����:

o
µ̄Th(x̄) ≤ f (x̄)

because at x̄, g(x̄) ≥ 0.
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Duality

It follows that for the optimal (λ?,µ?) and the optimal x?, the
difference Lp(x?)− Ld(λ?,µ?), called duality gap, is minimal. (If
the duality gap is 0, we talk about strong duality.)
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