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Twice continuously differentiable objective functions

Differentiable constraints

What about ...

2 / 49



A review of our assumptions

Twice continuously differentiable objective functions

Differentiable constraints

What about ...

3 / 49

Estimating derivatives numerically

Since
df (t)

dt
= lim

h→0

f (t + h)− f (t)

h
, we can estimate derivatives at

t0 with

df (t0)

dt
≈ f (t0 + h)− f (t0)

h

with h small. For estimating the gradient of f : Rn → R at t0, we
would need n + 1 function evaluations.

The error associated with this calculation is proportional to h, but
it cannot be zero in a digital computer. (A reasonable choice for h
is ≈ 1e− 08.)
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But sometimes

Evaluating f is extremely time-consuming.

Calculating f at a point may require real-world data (e.g., real
experiments).

f may be calculated with software we don’t have access to
(i.e., it’s a black box).

f is unpredictable (maybe it has discontinuities).

f may be noisy.
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Derivative-Free Methods

There are two flavors:

Model-based: Build explicitly, or implictly, a model of f (e.g,
a quadratic model by interpolation or regression), then
minimize the model and hope for the best.

Model-free: Make no assumptions about f . (These methods
are called Direct-Search Methods, or Black-box Methods.)
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One direct search method I am particulary familiar with:

Particle Swarm Optimization
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Particle swarm optimization: Origins
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Particle swarm optimization: Origins

Reynolds proposed a behavioral model in
which each agent follows three rules:

Separation. Each agent tries to move
away from its neighbors if
they are too close.

Alignment. Each agent steers towards the
average heading of its
neighbors.

Cohesion. Each agent tries to go
towards the average position
of its neighbors.

10 / 49



Particle swarm optimization: Origins

Kennedy and Eberhart included a ‘roost’ in
a simplified Reynolds-like simulation so that:

Each agent was attracted towards the
location of the roost.

Each agent ‘remembered’ where it was
closer to the roost.

Each agent shared information with its
neighbors (originally, all other agents)
about its closest location to the roost.
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Particle swarm optimization: The idea

Eventually, all agents ‘landed’ on the roost.

12 / 49



Particle swarm optimization: The idea

What if the notion of distance to the roost is changed by an
objective function to optimize? Will the agents ‘land’ in the
minimum?
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Particle swarm optimization: The basic algorithm

1. Create a ‘population’ of agents (called particles) uniformly
distributed over X .
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Particle swarm optimization: The basic algorithm

2. Evaluate each particle’s position according to the objective
function.
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Particle swarm optimization: The basic algorithm

3. If a particle’s current position is better than its previous best
position, update it.
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Particle swarm optimization: The basic algorithm

4. Determine the best particle (according to the particle’s previous
best positions).
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Particle swarm optimization: The basic algorithm

5. Update particles’ velocities according to
v t+1

i = v t
i + ϕ1U

t
1 (pb t

i − x t
i ) + ϕ2U

t
2 (gb t − x t

i ).
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Particle swarm optimization: The basic algorithm

7. Go to step 2 until stopping criteria are satisfied.
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Particle swarm optimization: The basic algorithm

7. Go to step 2 until stopping criteria are satisfied.
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Particle swarm optimization: Example

Rosenbrock function
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Particle swarm optimization: The basic algorithm in action
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Particle swarm optimization: Main modifications and
variants

Almost all modifications vary in some way the velocity-update rule:

v t+1
i = v t

i + ϕ1U
t
1 (pb t

i − x t
i ) + ϕ2U

t
2 (gb t − x t

i )
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v t+1
i = v t

i + ϕ1U
t
1 (pb t

i − x t
i ) + ϕ2U

t
2 (gb t − x t

i )︸ ︷︷ ︸
social influence

33 / 49

Particle swarm optimization: Different population
topologies

Every particle i has a neighborhood Ni ⊂ P, where P is the set of
particles.

v t+1
i = v t

i + ϕ1U
t
1 (pb t

i − x t
i ) + ϕ2U

t
2 (lb t

i − x t
i )

The idea was introduced by Kennedy and Eberhart [?].
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Particle swarm optimization: Inertia weight

It adds a parameter called inertia weight so that the modified rule
is:

v t+1
i = wv t

i + ϕ1U
t
1 (pb t

i − x t
i ) + ϕ2U

t
2 (lb t

i − x t
i )

It was proposed by Shi and Eberhart [?].
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Particle swarm optimization: Time-decreasing inertia
weight

The value of the inertia weight is decreased during a run

It was proposed by Shi and Eberhart [?].
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Particle swarm optimization: Constriction Factor

It is a special case of the inertia weight variant derived from:

v t+1
i = χ

[
v t

i + ϕ1U
t
1 (pb t

i − x t
i ) + ϕ2U

t
2 (lb t

i − x t
i )
]
,

where χ is called a “constriction factor” and is fixed.

It has been very influential after its publication by Clerc and
Kennedy in 2002 [?].
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Particle swarm optimization: Parameter selection

Consider a one-particle one-dimensional particle swarm. This
particle’s velocity-update rule is

v t+1 = av t + b1U
t
1 (pb t − x t) + b2U

t
2 (gb t − x t)
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Particle swarm optimization: Parameter selection

Additionally, if we make

E [U t
∗ (0, 1)] =

1

2
,

b =
b1 + b2

2
,

pb t+1 = pb t+1 , gb t+1 = gb t ,

and

r =
b1

b1 + b2
pb t +

b2
b1 + b2

gb t .
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Particle swarm optimization: Parameter selection

Then, we can say that

v t+1 = av t + b(r − x t) .
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Particle swarm optimization: Parameter selection

It can be shown that this system will behave in different ways
depending on the value of a, b.

Graph taken from Trelea [?].
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Particle swarm optimization: Parameter selection

Some examples

Graph taken from Trelea [?].
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Particle swarm optimization: Parameter selection

Factors to consider when choosing a particular variant and/or a
parameter set:

The characteristics of the problem (”modality”, search ranges,
dimension, etc)

Available search time (wall clock or function evaluations)

The solution quality threshold for defining a satisfactory
solution
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