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A review of our assumptions

@ Twice continuously differentiable objective functions

@ Differentiable constraints
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@ Twice continuously differentiable objective functions

@ Differentiable constraints

What about ...
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Estimating derivatives numerically

Since @ =i

h—0

f(t+ h)— f(t
im ( + f); ( ) we can estimate derivatives at

to with

df (to) _ f(to+ h) —f(to)
dt h
with h small. For estimating the gradient of f : R” — R at ty, we
would need n + 1 function evaluations.

The error associated with this calculation is proportional to h, but
it cannot be zero in a digital computer. (A reasonable choice for h
is ~ le — 08.)
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@ Evaluating f is extremely time-consuming.

o Calculating f at a point may require real-world data (e.g., real
experiments).

@ f may be calculated with software we don't have access to
(i.e., it's a black box).

e f is unpredictable (maybe it has discontinuities).

@ f may be noisy.
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Derivative-Free Methods

There are two flavors:

@ Model-based: Build explicitly, or implictly, a model of f (e.g,
a quadratic model by interpolation or regression), then
minimize the model and hope for the best.

@ Model-free: Make no assumptions about f. (These methods
are called Direct-Search Methods, or Black-box Methods.)




One direct search method | am particulary familiar with:

Particle Swarm Optimization
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Particle swarm optimization: Origins
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Particle swarm optimization: Origins

Ay
+d
Reynolds proposed a behavioral model in “ )‘
which each agent follows three rules: \)\\u‘/
Separation. Each agent tries to move
away from its neighbors if A
they are too close. /[“T\é\
Alignment. Each agent steers towards the A= 8 A
average heading of its \\v i/
neighbors.

Cohesion. Each agent tries to go A
towards the average position ; "’/’\\\
of its neighbors. ﬂ;? In

‘\\v/‘//
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Particle swarm optimization: Origins

Kennedy and Eberhart included a ‘roost’ in
a simplified Reynolds-like simulation so that: o o

@ Each agent was attracted towards the
location of the roost.

@ Each agent ‘remembered’ where it was
closer to the roost. AN

@ Each agent shared information with its U
neighbors (originally, all other agents) /
about its closest location to the roost.
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Particle swarm optimization: The idea

Eventually, all agents ‘landed’ on the roost.
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Particle swarm optimization: The idea

€

What if the notion of distance to the roost is changed by an
objective function to optimize? Will the agents ‘land’ in the
minimum?
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Particle swarm optimization: The basic algorithm

1. Create a ‘population’ of agents (called particles) uniformly
distributed over X.

10
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Particle swarm optimization: The basic algorithm

2. Evaluate each particle’s position according to the objective
function.
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Particle swarm optimization: The basic algorithm

3. If a particle's current position is better than its previous best
position, update it.
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Particle swarm optimization: The basic algorithm

4. Determine the best particle (according to the particle’s previous
best positions).
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Particle swarm optimization: The basic algorithm

5. Update particles’ velocities according to
"itJrl = v/ +p1U{(pb/ — x[) + p2U3(gb " — x/[).

10
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Particle swarm optimization: The basic algorithm

6. Move particles to their new positions according to
xf+1 ::xf-+»vf+1.
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Particle swarm optimization: The basic algorithm

7. Go to step 2 until stopping criteria are satisfied.
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Particle swarm optimization: The basic algorithm

2. Evaluate each particle’s position according to the objective
function.
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Particle swarm optimization: The basic algorithm

3. If a particle's current position is better than its previous best
position, update it.
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Particle swarm optimization: The basic algorithm

3. If a particle's current position is better than its previous best
position, update it.
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Particle swarm optimization: The basic algorithm

4. Determine the best particle (according to the particle’s previous
best positions).
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Particle swarm optimization: The basic algorithm

5. Update particles’ velocities according to
"itJrl = v/ +p1U{(pb/ — x}) + p2U3(gb " — x/[).
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Particle swarm optimization: The basic algorithm

6. Move particles to their new positions according to
xl_t—f—l — xit + Vl-t+1.
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Particle swarm optimization: The basic algorithm

7. Go to step 2 until stopping criteria are satisfied.
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Particle swarm optimization: Example

Rosenbrock function
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Particle swarm optimization: The basic algorithm in action
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Particle swarm optimization: Main modifications and

variants

Almost all modifications vary in some way the velocity-update rule:

vitl = vi + e1U(pb/ — ) + ¢2U;(gb" — x/[)

1
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Particle swarm optimization: Main modifications and

variants

Almost all modifications vary in some way the velocity-update rule:

]

vitt = v 4+ o1Uf(pbf — x[) + p2U3(gb* — x{)
—~—

inertia
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Particle swarm optimization: Main modifications and

variants

Almost all modifications vary in some way the velocity-update rule:

vitt=vf 4+ oUf(pb/ %) + o2U5(gb — x/)

)

personal influence
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Particle swarm optimization: Main modifications and

variants

Almost all modifications vary in some way the velocity-update rule:

v =i+ o1Uf(pb — x{) + 2oUs(gb " — x/)

)

social influence

33/49

Particle swarm optimization: Different population

topologies

Every particle i has a neighborhood N; C P, where P is the set of
particles.

viT = vf 4+ o1Uf(pb] — x{) + ©2U3(Ib] — xf)

PSS ()

/‘\\l!_.!'g\! =
XN~

N

The idea was introduced by Kennedy and Eberhart [?].

34 /49




Particle swarm optimization: Inertia weight

It adds a parameter called inertia weight so that the modified rule
IS:

Vit+1 _ WV,-t i 901U1t(Pb,'t _ x,-t) + 902U2t(lbit _ xit)

It was proposed by Shi and Eberhart [?].
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Particle swarm optimization: Time-decreasing inertia

weight

The value of the inertia weight is decreased during a run

Inertia weight

0.2
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iteration

It was proposed by Shi and Eberhart [?].
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Particle swarm optimization: Constriction Factor

It is a special case of the inertia weight variant derived from:

vith = v +e1U1(pb] — x{) + p2U3(Ib] — x/)] |,

1

where Yy is called a “constriction factor” and is fixed.

It has been very influential after its publication by Clerc and
Kennedy in 2002 [7].
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Particle swarm optimization: Parameter selection

Consider a one-particle one-dimensional particle swarm. This
particle’s velocity-update rule is

vl = ovt 4 b US(pbt — xt) 4+ b Uf(ght — xF)
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Particle swarm optimization: Parameter selection

Additionally, if we make
: 1
E[Ur(0,1)] = 5
b+ b
==
pbt+1 — pbt+1, bt+1 — gbt,

b

and

b1 bt by

— + bt.
b1+b2p b1—|—b2g

r
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Particle swarm optimization: Parameter selection

Then, we can say that

vt = avt 4 b(r — x1).

40/49




Particle swarm optimization: Parameter selection

It can be shown that this system will behave in different ways
depending on the value of 2, b.
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Graph taken from Trelea [?].
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Particle swarm optimization: Parameter selection

Some examples
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Particle swarm optimization: Parameter selection

Factors to consider when choosing a particular variant and/or a
parameter set:

@ The characteristics of the problem (" modality”, search ranges,
dimension, etc)

@ Auvailable search time (wall clock or function evaluations)

@ The solution quality threshold for defining a satisfactory
solution
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