MATH529 — Fundamentals of Optimization

Derivative-Free and Direct Search Methods

MARCO A. MONTES DE OcCA

Mathematical Sciences, University of Delaware, USA

1/49
A review of our assumptions

@ Twice continuously differentiable objective functions

@ Differentiable constraints

2/49

A review of our assumptions

@ Twice continuously differentiable objective functions

@ Differentiable constraints

What about ...

3/49

Estimating derivatives numerically

Since @ =i

h—0

f(t+ h)— f(t
im (+ f); () we can estimate derivatives at

to with

df (to) _ f(to+ h) —f(to)
dt h
with h small. For estimating the gradient of f : R” — R at ty, we
would need n + 1 function evaluations.

The error associated with this calculation is proportional to h, but
it cannot be zero in a digital computer. (A reasonable choice for h
is ~ le — 08.)

4/49

@ Evaluating f is extremely time-consuming.

o Calculating f at a point may require real-world data (e.g., real
experiments).

@ f may be calculated with software we don't have access to
(i.e., it's a black box).

e f is unpredictable (maybe it has discontinuities).

@ f may be noisy.

5/49

Derivative-Free Methods

There are two flavors:

@ Model-based: Build explicitly, or implictly, a model of f (e.g,
a quadratic model by interpolation or regression), then
minimize the model and hope for the best.

@ Model-free: Make no assumptions about f. (These methods
are called Direct-Search Methods, or Black-box Methods.)

One direct search method | am particulary familiar with:

Particle Swarm Optimization

7/49

Particle swarm optimization: Origins

Fil

Particle swarm optimization: Origins

i .

s

Wk J

J

S ////r

Particle swarm optimization: Origins

Ay
+d
Reynolds proposed a behavioral model in “)‘
which each agent follows three rules: \)\\u‘/
Separation. Each agent tries to move
away from its neighbors if A
they are too close. /[“T\é\
Alignment. Each agent steers towards the A= 8 A
average heading of its \\v i/
neighbors.

Cohesion. Each agent tries to go A
towards the average position ; "’/’\\\
of its neighbors. ﬂ;? In

‘\\v/‘//

10 /49

Particle swarm optimization: Origins

Kennedy and Eberhart included a ‘roost’ in
a simplified Reynolds-like simulation so that: o o

@ Each agent was attracted towards the
location of the roost.

@ Each agent ‘remembered’ where it was
closer to the roost. AN

@ Each agent shared information with its U
neighbors (originally, all other agents) /
about its closest location to the roost.

11 /49

Particle swarm optimization: The idea

Eventually, all agents ‘landed’ on the roost.

12 /49

Particle swarm optimization: The idea

€

What if the notion of distance to the roost is changed by an
objective function to optimize? Will the agents ‘land’ in the
minimum?

13/49

Particle swarm optimization: The basic algorithm

1. Create a ‘population’ of agents (called particles) uniformly
distributed over X.

10

14 /49

Particle swarm optimization: The basic algorithm

2. Evaluate each particle’s position according to the objective
function.

10
(&)
2
S 160
140
150
0 80
60
20
5 2
-10

-10 -5 0 5 10

15/49

Particle swarm optimization: The basic algorithm

3. If a particle's current position is better than its previous best
position, update it.

10
o
%
S 160
140
i
0 80
60
20
_5 D
-10

-10 -5 0 5 10

16 /49

Particle swarm optimization: The basic algorithm

4. Determine the best particle (according to the particle’s previous
best positions).

10

-10
-10 -5 0 5 10

17 /49

Particle swarm optimization: The basic algorithm

5. Update particles’ velocities according to
"itJrl = v/ +p1U{(pb/ — x[) + p2U3(gb " — x/[).

10

18/ 49

Particle swarm optimization: The basic algorithm

6. Move particles to their new positions according to
xf+1 ::xf-+»vf+1.

19/ 49

Particle swarm optimization: The basic algorithm

7. Go to step 2 until stopping criteria are satisfied.

10

-10
-10 -5 0 5 10

20 /49

Particle swarm optimization: The basic algorithm

2. Evaluate each particle’s position according to the objective
function.

10
|5
2
S 160
140
150
0 80
60
20
5 2
-10

-10 -5 0 5 10

21/49

Particle swarm optimization: The basic algorithm

3. If a particle's current position is better than its previous best
position, update it.

10
o
%
S 160
140
i
0 80
60
20
_5 D
-10

-10 -5 0 5 10

22/49

Particle swarm optimization: The basic algorithm

3. If a particle's current position is better than its previous best
position, update it.

10
%
S 160
140
i
0 80
60
20
_5 D
-10

-10 -5 0 5 10

23 /49

Particle swarm optimization: The basic algorithm

4. Determine the best particle (according to the particle’s previous
best positions).

10

-10
-10 -5 0 5 10

24 /49

Particle swarm optimization: The basic algorithm

5. Update particles’ velocities according to
"itJrl = v/ +p1U{(pb/ — x}) + p2U3(gb " — x/[).

10

-10
-10 -5 0 5 10

25 /49

Particle swarm optimization: The basic algorithm

6. Move particles to their new positions according to
xl_t—f—l — xit + Vl-t+1.

10

-10
-10 -5 0 5 10

26 /49

Particle swarm optimization: The basic algorithm

7. Go to step 2 until stopping criteria are satisfied.

10

-10
-10 -5 0 5 10

27 /49

Particle swarm optimization: Example

Rosenbrock function

1e+06
100000
10000
1000
100

10

0.1

28 /49

Particle swarm optimization: The basic algorithm in action

29/49

Particle swarm optimization: Main modifications and

variants

Almost all modifications vary in some way the velocity-update rule:

vitl = vi + e1U(pb/ —) + ¢2U;(gb" — x/[)

1

30/49

Particle swarm optimization: Main modifications and

variants

Almost all modifications vary in some way the velocity-update rule:

]

vitt = v 4+ o1Uf(pbf — x[) + p2U3(gb* — x{)
—~—

inertia

31/49

Particle swarm optimization: Main modifications and

variants

Almost all modifications vary in some way the velocity-update rule:

vitt=vf 4+ oUf(pb/ %) + o2U5(gb — x/)

)

personal influence

32/49

Particle swarm optimization: Main modifications and

variants

Almost all modifications vary in some way the velocity-update rule:

v =i+ o1Uf(pb — x{) + 2oUs(gb " — x/)

)

social influence

33/49

Particle swarm optimization: Different population

topologies

Every particle i has a neighborhood N; C P, where P is the set of
particles.

viT = vf 4+ o1Uf(pb] — x{) + ©2U3(Ib] — xf)

PSS ()

/‘\\l!_.!'g\! =
XN~

N

The idea was introduced by Kennedy and Eberhart [?].

34 /49

Particle swarm optimization: Inertia weight

It adds a parameter called inertia weight so that the modified rule
IS:

Vit+1 _ WV,-t i 901U1t(Pb,'t _ x,-t) + 902U2t(lbit _ xit)

It was proposed by Shi and Eberhart [?].

35/49

Particle swarm optimization: Time-decreasing inertia

weight

The value of the inertia weight is decreased during a run

Inertia weight

0.2

0 200 400 600 800 1000
iteration

It was proposed by Shi and Eberhart [?].

36 /49

Particle swarm optimization: Constriction Factor

It is a special case of the inertia weight variant derived from:

vith = v +e1U1(pb] — x{) + p2U3(Ib] — x/)] |,

1

where Yy is called a “constriction factor” and is fixed.

It has been very influential after its publication by Clerc and
Kennedy in 2002 [7].

37/49

Particle swarm optimization: Parameter selection

Consider a one-particle one-dimensional particle swarm. This
particle’s velocity-update rule is

vl = ovt 4 b US(pbt — xt) 4+ b Uf(ght — xF)

38/49

Particle swarm optimization: Parameter selection

Additionally, if we make
: 1
E[Ur(0,1)] = 5
b+ b
==
pbt+1 — pbt+1, bt+1 — gbt,

b

and

b1 bt by

— + bt.
b1+b2p b1—|—b2g

r

39/49

Particle swarm optimization: Parameter selection

Then, we can say that

vt = avt 4 b(r — x1).

40/49

Particle swarm optimization: Parameter selection

It can be shown that this system will behave in different ways
depending on the value of 2, b.

(b) b (c) b
A
4 4+
3 3T
Zigzagging
217 Harmonic 2r
oscillatory
11
e e

Graph taken from Trelea [?].

41 /49

Particle swarm optimization: Parameter selection

Some examples

(a) a=0.9, b=0.1 () a=0.7, b=03 (©) a=09, b=3.0

= 13 3 3
x - _
= 2 X, =,
2 5 s
=1 =1 =1
2o 3
. 20 20
o°-1 o o
£ s CRY
< 2 o= T
a -2 g -2

3

0 10 20 30 40 50 20 10 20 30 40 50 30 10 20 30 40 50
Iteration number (k) Iteration number (k) Iteration number (k)
(d) a=0.1, 6=0.1 () a=0.1, b=2.1 ® a=-07, b=05

3 3 | 3
E 2 X2) 2
= E e
21 g1 21
o 8 [
go 0 S0 P
o o o
G - g1 © -1
5 S .2 £
o -2 o £-2

-3 20 10 20 30 40 50 -3

0 10 20 30 40 50
Iteration number (k)

0 10 20 30 40 50

heration number (k) Iteration number (k)

Graph taken from Trelea [?].

42 /49

Particle swarm optimization: Parameter selection

Factors to consider when choosing a particular variant and/or a
parameter set:

@ The characteristics of the problem (" modality”, search ranges,
dimension, etc)

@ Auvailable search time (wall clock or function evaluations)

@ The solution quality threshold for defining a satisfactory
solution

43 /49

